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Axioms are proposed for a certain “alternative” kind of ternary composition algebra, termed a
3Cn algebra. The axioms are shown to be (for » > 2) in a simple correspondence with the
axioms for a ternary vector cross product algebra. The axioms imply thatn =1,2,4, or 8
(from which the usual Hurwitz theorem is deduced). The existence of 3C8 algebras is
demonstrated by an explicit construction in four-dimensional Hilbert space, without appeal to

the properties of the algebra of octonions.

I. INTRODUCTION: 3Xn ALGEBRAS AND 3Cn
ALGEBRAS

Throughout this paper let E denote a real n-dimensional
vector space equipped with a positive definite inner product
(', ). For n>3 a ternary vector cross product for (E, (,)) isa
map X: E>—E that satisfies the axioms'?

X1 Xis trilinear,
X2 X(a,b,c) is orthogonal to each of a,b,c,
X3 || X(ab)| =llanbAc|,

(1.1)

for all a,bceE. Here ||a||®= (a,a) and |la,Aa,Aa,
= det({a,,a;)). In such circumstances we refer to the triple
A = (E,{, ), X) asa 3Xn algebra.
With E and {, ) as above, but allowing now any dimen-
sion n>1, suppose that thereis amap { }: E>— E that satis-
fies

C1 { }is trilinear,
C2 {aac} = (a,ayc = {caa},
C3  ({abe}i = llall 15| liell,

(1.2)

for all a,b,ceE. In such circumstances we refer to the triple
€ =(FE, {(,),{}) asa3Cnalgebra

It is known'? (see also Theorems 2.3 and 3.2 below)
that 3Xn algebras exist only in dimensions » = 4 and n = 8.
Since the properties of 3X4 algebras are readily obtained, as
indicated? in Sec. I, the chief interest lies in the “exception-
al” 3X8 algebras. Since the latter can be defined in terms of
the (not-associative) algebra O of the real octonions, pre-
vious authors®*? have studied the properties of 3X8 algebras
by appeal to those of the algebra O. However, a 3X8 algebra
has more symmetry than O, the respective automorphism
groups being>® Spin(7) and G,, of dimensions 21 and 14.
Consequently one would expect that a study of 3X8 algebras
in their own right, without appeal to the properties of O,
would increase one’s understanding of this area.

These expectations are, in fact, borne out. For example,
certain results for binary multiplication (the Hurwitz
theorem, the existence of quaternionic subalgebras of Q)
receive a cleaner formulation in terms of ternary multiplica-
tion (see Theorems 3.2 and 4.1 below). In particular, the
proof we give of Theorem 3.2, the “3Cn Hurwitz theorem,”
does not involve us in having to choose a preferred unit ele-
ment ecE, nor in computations with the associated conjuga-
tion a—Ka = a:

a=2{ae)e —a. (1.3)

2329 J. Math. Phys. 29 (11), November 1988

0022-2488/88/112329-05$02.50

The present paper represents an advance on a previous
study’ of 3Xn algebras in two chief respects. First, as a result
of the inclusion of the “alternative axiom” C2 in our present
definiton of a 3Cn algebra, we show—see Theorem 2.3—
that 3Cn algebras and 3Xn algebras are, for #>3, in a simple
one to one correspondence (under which the automorphism
groups of the two algebras are identical ). Second, we demon-
strate the existence of 3X8 and 3C8 algebras, without appeal
to the existence and properties of the algebra O, by display-
ing, in Sec. IV, surprisingly simple explicit expressions for
X(a,b,c) and {abc}. (It is true that previously’ we obtained a
canonical form for a 3X8 algebra. However, owing to the
nonlinearity of property X3, it would have been exceedingly
tedious to check directly that the purported ternary vector
cross product X really did satisfy Axioms X1-X3.) In this
paper we also take the opportunity to fill in many details of
proofs that were omitted in Ref. 7.

Remark: We ought to mention the ingenious and intri-
cate investigations of McCrimmon® into general ternary
composition algebras. The disappointing conclusion of
McCrimmon’s work is that the omission of Axiom C2 does
not, up to isotopy (and up to permutation of the variables
a,b,c in {abc}), lead to anything new.

Il. CONSEQUENCES OF THE AXIOMS

In this section we consider some immediate conse-
quences, first, of Axioms X1-X3 and, second, of Axioms
C1-C3. We are then able to demonstrate that the two axiom
systems deal in effect with the same mathematical object.

Associated with a 3Xn algebra % = (E, ¢, ), X) is the
scalar quadruple product ® defined by

®(a,b,c,d) = (a,X(bec,d)) 2.n

and also a family {7 b a,beE} of linear operators on E,
where

T,,c=X(ab,c). (2.2)

Observe that @ and T are, respectively, quadrilinear and
bilinear functions of their arguments.

Lemma 2. 1: Functions ®, X, and T are alternating func-
tions of their arguments. Moreover T, ,Sk(E,E), for each
a,beE.

Proof of Lemma 2.1: By X2, ®(a,b;c,d) is zero when-
ever a = b or a =c or a =d. Hence ® is alternating, and
hence so are X and 7. Knowing riow that ®(a,b,c,d)

= — ®(d,b,c,a) we read off the skew-adjoint property
7‘,,,6 = — T,..(Wedenote by A theadjoint of a linear opera-
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tor 4 on E: (a,4d ) = (4a,d ).)

Remark: Axioms X2 and X3 clearly rule out the possi-
bility n = 3. On the other hand if n =4 we can make
(E, (,)) into a 3X4 algebra in precisely two ways, by taking
®in (2.1) tobe Aor — A, where A is a normalized determi-
nant function for E. If, for n = 4, {a,b,c,d} is any ordered
orthonormal basis positive in the sense that
®(a,b,c,d) = + 1,then the nonzero values of X on this basis
are obtained by permutation from the values

X(bed) =a, X(a,cd)= —b,
X(a,bd) =¢, X(abe)= —d.
Turning now to a 3Cn algebra € = (E, {, ), { }), we
define, for each a,beE, linear operator y,, and 0,, on E by
(2.4)

From C1, y,, and o,, are bilinear functions of their argu-
ments a and b, and from C2 they satisfy

. (2.3)

Yas¢ ={abc} and o,,c={cba}.

ya,a = <0,0>1= aa,a (25)

and hence satisfy also the linearized form of this last equa-
tion:

Vap + Voo =200 DM =0, + 0p,. (2.6)
From C3 we have
7ascll = lall 1Bl lleh = lloasell,
whence
VasVap = (@@){bb}I=05,,0,, 2.7

and hence also, by linearization, we have

?a,bYa.c + 7a,c7/a,b = 2(0,0) (b,C>I = a'a,ba'a,r: + &a,caa,b‘

(2.8)
Setting ¢ = a in (2.8) we obtain
ya,b + i’/a,b = 2(0,17 )1 = Ua.b + &a,b (29)
and hence, from (2.6) and (2.9), we see that
Vab = Voa 80d T,p =0 . (2.10)

From (2.7) and (2.9) we see thatif 4 =y, , orif 4 =g,
then A satisfies the quadratic equation

A2 —2{a,b)A + (a,a){b,b}[=0. 2.11)
If {e,e) = 1 then the special cases b = e of (2.6) and (2.10)
yield

?ﬂ,e = 72,: and a’a,nr.’ (2.12)

= a&,e’
where @ is as in (1.3). Incidentally, in ternary notation, we
have @ = {eae}, as is seen by letting (2.6) act upon b and
setting b = e. Other special cases of the above results yield
the following lemma. The only further point that arises is
that, in part (a) of Lemma 2.2, ¥,, and o,, are proper
isometries because they connect up continuously with J
( = 7!1,(1 = aa.a )‘
Lemma2.2: (a) If (a,a) = (b,b) = l,theny,, ando,,

belong to the group SO(E) of proper isometries of E.

(b) If {(a,b) =0, then y,, = — ¥,,€Sk(E,E) and
s = — 0,,SSk(E,E).

(¢) If ab,c are mutually orthogonal then ¥,,7..
= - YG,CYﬂ,b and Ua,baa,c = - aa,caa,b'

[+

a
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Asalead-in to the next theorem observe thatif Z: E> - E
is defined by

Z(a,b,c) = (a,b)c + (becya— (a,c)b, (2.13)

then Z satisfies Axioms C1 and C2. Consequently if { } satis-
fies C1 and C2 and if X: E *— E is defined through the equa-
tion

{abc} = X(a,b,c) + Z(a,b,c), (2.14)

then X satisfies X(a,a,c) = 0 = X(c,a,a), whence X, clearly
trilinear, is alternating.

Theorem 2.3: If (2.14) is used to define a one to one
correspondence between maps { }: E>—~E and X: E>E,
then, for n»3,€ = (E,(, ),{}) isa 3Cn algebra if and only
ifN = (E, (,),X)isa3Xn algebra.

Proof of Theorem 2.3: Clearly X1 holds if and only if C1
holds. Given X1 and X2, then (Lemma 2.1) X'is alternating,
whence C2 follows.

On the other hand given Cl1, C2, and C3 we can derive
X2. By our lead-in to the theorem, we know that X is alter-
nating and thus it suffices to show that X(a,b,c) is orthogo-
naltoe,

(c.X(a,b,c)) = (¢, {abc}) — (cc)(ab)
= <c:(7’a,b —{a,b))c)
=0,
since, by (2.9), ¥,, — (a,b )] is skew-adjoint.
To complete the proof we need to show, in the presence

of properties X1, X2, C1, and C2, that C3 holds if and only if
X3 holds. Applying Pythagoras’s theorem to (2.14) yields

[[{abe}||* = (| X(a,b,0)|* + ||Z(a,b,c) || (2.15)

and so the desired result holds by virtue of the (easily
checked) identity

(a,a) (a,b) ({ac)
(a,a){bb){c,c) = |(ba) <(bb) (bc)
(c,a) (b)) (cc)

+ |[Z(ab,0) | (2.16)

Remark: 1t follows from the correspondence (2.14)
that the multiplication operators 7,, and o,, for the 3Cn
algebra € are related to the multiplication operators 7, , for
the 3Xn algebra ¥ by

7a,b = (a’b >I+ Ta,b - Ja,b’

(2.17)
Oap =Kab)—T,, —J,,.

Here J,,€Sk(E,E) is defined by J,,c = (a,c)b — (b,c)a.

(If a and b are linearly independent, then J, , is nonzero and

generates, by exponentiation, rotations in the plane <a,b>

spanned by @ and b.)

lil. THE 3Cn HURWITZ THEOREM

In this section we shall determine, without appeal to the
usual Hurwitz theorem for (binary) composition algebras,
those values of n for which 3Cn algebras exist. Bearing in
mind Theorem 2.3, and the remark after Lemma 2.1, we see
that n = 3 is ruled out, but that 3C4 algebras certainly exist.
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The values of { } upon a positive orthonormal basis for a 3C4
algebra are given by (2.14) in conjuction with (2.3). Any
facts needed concerning 3C4 algebras are accordingly easily
unearthed. In particular we can easily check that the proper-
ties

Yb,a 7c,a7d,a =—-I=— ab,aac,aad,a
hold for any positive orthonormal basis {a,b,c,d}.

Remark: In terms of the associated (see Sec. V) binary
composition algebra, isomorphic to the algebra H of the qua-
ternions, with @ taken to be the identity element e in (5.7),
we see that (3.1) is, in effect, granted that H is associative,
Hamilton’s relation ijk = —e. '

For n > 4, 3C4 subalgebras of a 3Cn algebra € = (E,( ),
{}) are readily constructed, as in part (a) of the next lemma.

Lemma 3.1: Let {b,c,d} be any ordered orthonormal
triad of vectors of E; set a = {bcd} [ = X(b,c,d)] and
H= <ab,c,d> (= the subspace spanned by a,b,c,d).
Then (a) H is a 3C4 subalgebra of E having {a,b,c,d} as
positive [i.e., ®(a,b,c,d) = + 1] orthonormal basis; (b) for
nonzero h,keH, y,, and o,, map H onto H and H* onto
H*; (c) for nonzero heH and nonzero peH*, Yo and o,
inject H into H*; and (d) if [1”eO(E) denotes the involu-
tion which is + 1 upon H and — 1 upon H*,

3.1

Yb,a yc,a Yd,a = - HH = - ab,a ac,a ad,a - (32)

Proof of Lemma 3.1: (a) By C3 and X2, {a,b,c,d} is an
orthonormal set and so dim H = 4. Moreover H is invariant
under y,, for u,ve{a,b,c,d}. For example, by the definition

of a, we have y,.d =a, whence y, a= —d, since, by
Lemma 2.2, (7,.)>= — 1. Also, by C2, y,.c=b, and
hence ¥,.b= —c. In this way we see that {uwvw}

(=7y,,w)liesin H forall u,v,we{a,b,c,d}, andso Hisa 3C4
subalgebra.

(b) Since H is a subalgebra, ¥, , and 0, , map Hinto H.
But, by (2.7), ¥, and o, , are similitudes, and so map H
onto H and H* onto H".

(c) For all keH we see that y,,,k = {phk} = 0, ,p lies
in H* on account of part (b). Similarly o, ,k = ¥, ,p lies in
H*. Since 7, and 0,, are, by (2.7), invertible, they must
inject H into H*.

(d) From (3.1) we see that (3.2) certainly holds when
acting upon H. Since E = H @ H " the first equality in (3.2)
will therefore be proved if we can show that v, ..., V4P =P
for all peH*. Now

VeaVaaP = — VeaVpa@  (since X is alternating)

=¥,a¥c0d [by Lemma2.2(c)]
=Ypab [by (2.3)]
= = Vbl
Hence the desired result, since (7s4)> = — I. The second

equality in (3.2) is proved similarly.

Granted these preliminaries, we offer the following very
brief proof of the “3Cn Hurwitz theorem.”

Theorem 3.2: For a 3Cn algebra, » must equal 1, 2, 4,
or 8.

Proof of Theorem 3.2: We need to show that n >4 im-
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plies n=8. Given n>4, choose a 3C4 subalgebra
H = <a,b,c,d> asin Lemma 3.1, and let p be any nonzero
element of H*. Then 7, , is an invertible operator, which, by
Lemma 2.2 (¢) and (3.2), anticommutes with IT¥, Hence
I1# has zero trace, whence dim H' = dim H =4, and so
n=4+4+4=28

Remark: For a 3Cn algebra withn = 1 or n = 2 we have
X = 0 and hence {abc} = Z(a,b,c). Certainly 3C1 and 3C2
algebras exist, since, if we take E = R and ||a|| = |a], then a
3Cl1 algebra results from the definition {abc} = abc, while if
we take E = Cand ||a|| = (aa)'/? then a 3C2 algebra results
from the definition {abc} = abe. Moreover, as discussed at
the start of this section, we know that 3C4 algebras exist.
Finally, 3C8 algebras exist: see Theorem 4.2 in Sec. IV.

IV. 3C8 ALGEBRAS

These possess the pleasing property that they readily
split into an orthogonal direct sum of two 3C4 algebras.

Theorem 4.1: If H is any 3C4 subalgebra of a 3C8 alge-
bra then H*' is also a 3C4 subalgebra.

Proof of Theorem 4.1: Since ¥,, = ¥,,, we have the
identity

(ha {qu}) = (O'h_qu‘).

Now for heH and p,q,reH* the rhs is zero, on account of
Lemma 3.1(c). Thisis because, whendim H' = dim H, o, »
will, for nonzero A,p map H onto H* and, being proportional
to an isometry, will therefore map H* onto H. The identity
thus entails that {pgr}eH * for all p,q,reH .

We now settle the question of existence of 3C8 algebras
by means of an explicit construction. To this end let C* de-
note a four-dimensional complex Hilbert space, with inner
product (a,b) linear in a and antilinear in b. Let A be a
determinant function for C*, normalized to be + 1 upon
some ordered orthonormal basis {e,,¢,,e,,¢,}. Let b XcXd
denote the “complex ternary vector cross product” on C*,
which is defined via

A(a,b,c,d) = (a,b XcXd). (4.1)

Observe that a X b X c is orthogonal to each of a,b,c, that its
length is given by

4.2)

but that it is antilinear in each of its three arguments. [We
could equally well defineax b Xc tobe * (aAbAc), using
that star operator determined by the choice e;Ae, Ae, A ey
of unit element in A*C*. Now recall that, for complex Hil-
bert space, the star operator is an antiunitary operator. ]

Theorem 4.2: Let E be the realification (C*)® of C*4, let
{a,b ) be the real part of (a,b), and define { }: E3—>E by

{abc} = axb Xc+ (a,b)c + (b,c)a — (a,c)b. (4.3)
Then (E, (, ), { }) is a 3C8 algebra.

Proof of Theorem 4.2: Clearly { } satisfies Axioms C1
and C2. It also satisfies Axiom C3-—because the identity

(2.16) still holds even when (, ) is replaced throughout by

(,).
Remark: Let [a,b] denote the imaginary part of (a,b):

(a,Xa,Xasa,Xa,Xa;) = det(a;,a;),
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(a,b) = (a,b) + ila,b]. (4.4)

Of course we have [a,b] = (a,ib) = — (ia,b) = — [b,al.
Thus E is equipped both with O(8) geometry, via (, ), and
Sp(8;R) geometry, via [, ]. The ternary vector cross prod-
uct X: E * - E associated with { } is, from (2.14) and (4.3),
seen to be

X(a,b,e) =aXxb Xc+i(la,b]c+ [bela+ [c,ald) (4.5)

and the associated scalar quadruple product is

®(a,b,c,d) = Re(A(a,b,c,d)) + A(a,b,c,d), (4.6)
where
A(abc,d) = [a,b][cd] + [b,c][a,d]
+ [c.al[bd]. (4.7)
Remark: According to (4.3) we have
Viwu =, for all unit vectors uckE, (4.8)

where JeSO(E)NSk(E,E) denotes the linear operator
a—ia on E. Consequently® the ternary vector cross product
defined by (4.5) is'° of type 1. Indeed if we adopt

{e4:21,2,€3,€0 €1 185,83 1,
where e,. = ie,, k =0,1,2,3, as the orthonormal basis for
E = (C*)®, then the values of ® on this basis are precisely
those of the canonical form for ®etype I which was de-
scribed in Ref. 7.

Remark: The explicit expression (4.3) makes manifest
the fact that the automorphisms of a 3C8 algebra certainly
include at least SU(C*) CO(E) NSp(E), and so may prove
useful in the context of the maximal subgroup chain:

SU(4) CSpin(7) CSO(8).

Remark: It could be of some interest to determine the
invariance group G of ¢ for a 3X8 algebra, since G could
conceivably be larger than Spin(7). 1 After all, the automor-
phism group of a 2X3 algebra (i.e., that of the usual 2 X b in
three-dimensional Euclidean space) is SO(3) while the in-
variance group of the associated scalar triple product ¢(a,b,
¢) = {a,b Xc) is SL(3;R); similarly the automorphism
group of a 3X4 algebra is SO(4) while the invariance group
of ® (a determinant function) is SL(4;R). However, the
explicit expression (4.6) is probably rot a good starting
point for the determination of G, since we would still not
know G even if we knew the separate invariance groups, say,
G, and G,,, of Re(A) and A. For G is larger than
G, NG, ,ifonly becauseit contains certain Spin(7) trans-
formations [those not in SU(C*)] that mix Re(A) and A.
The author confesses that he knows neither G, nor G, .
As far as G(,, is concerned it obviously contains
Sp(E) =Sp(8;R), but is it perhaps larger? Certainly in four-
dimensional real space the invariance group of A is not
Sp(4;R) but SL(4;R), because A is alternating and hence, in
dimension 4, proportional to a determinant function.

Remark: Starting from the explicit expression (4.5) and
making use of the property

(a,Xa,Xas,b, X b,Xby) =det(b,,q;), (4.9)
it is possible'? to derive the following identity for the (eight-
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dimensional, type I) ternary vector cross product X:
(X(a,b,0),X(upw)) = (aAbAcluhvAw)

+ F(a,b,c,u,v,w), (4.10)
where, writing  f(a,b,c) + flb,c,a) + f(c,a,b) as
Cyc,sflab,c),

F(a,b,c,u,v,w) = Cyc,; . Cyc,,,., (a,u) P (b,c,o,w).

(4.11)

In its coordinate form the identity (4.10) has previously ap-
peared*'? in the physics literature on d = 11 supergravity
theories.

V. THE CONNECTION WITH 2Cn ALGEBRAS

The pair (E,{, }) becomes a composition algebra, in the
usual (binary) sense, if E is equipped with a bilinear multi-
plication ab (not necessarily associative), which possesses
an identity element e: ea = a = ae, and which satisfies the
composition law

llab |t = llall {15 (5.1)

If dim E = n we will refer to such an algebra as a 2Cn alge-
bra.

If we start out from a 2Cn algebra we can construct a
3Cn algebra by defining

{abc} = (ab)c, (5.2)

with b asin (1.3). In order to check that { } satisfies Axiom
C2 we need to know the following two facts'* concerning
2Cn algebras. First, they satisfy the left and right alternative
laws

a(ab) =a*h and (ba)a = ba®. (5.3)
Second, the conjugation @ — g satisfies
da = (a,a)e = qaa. (5.4)

Granted these facts, { } as defined in (5.2) satisfies the axi-
oms for a 3Cn algebra. So Theorem 3.2 entails that 2Cn
algebras can exist only in dimensions n = 1, 2, 4, or 8—that
is, Theorem 3.2 entails the well-known Hurwitz theorem for
binary composition algebras.

In fact, we can construct a 3Cn algebra out of a 2Cn
algebra in four ways, by defining {abc} to be

(1) (ab)e, (1) c(ba),

(2) (cb)a, (2') a(be).

In the case n = 8 all four kinds of {abc} are distinct, in the
sense that they lie on different SO(8) orbits. Indeed we can
see! that (1) and (1'), in some order, provide examples of
types I* and I4, while (2) and (2'), in the same order, pro-
vide examples of types II® and I1-.

Incidentally in order to see that (1) is mapped onto (1)
under the natural action {abch—K {@ b €} of the conjuga-
tion KeO_ (E) we need a third property of 2Cn algebras,
namely,

ab = ba. (5.6)

Going in the other direction (the viewpoint of the pres-
ent work) if we start out from a 3Cn algebra we can con-

(5.5)
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struct a 2Cn algebra, moreover with any chosen unit vector
ecE as identity element, simply by defining

ac = {aec}. (5.7
In ternary terms the alternative laws (5.3) state that
(ya,e )2 = y{aea},e and (aa.e )2 = a{aea},e’ (5-8)

which is seen to be the special case b = e of (2.11) [since
{aea} = Z(a,e,a)]. Similarly the special case b = e of (2.7)
entails (5.4). Moreover the conjugation K: a—a commutes
with T,, and anticommutes with J, ., whence we derive
from (2.17) the result

Ky,.=0d,.K. (5.9)

On acting upon b with the two sides of (5.9) we obtain (5.6).
Alternatively (5.6) can be obtained from (2.8) upon setting
a=e b=a,c=b.

Remark: The relation (5.9) occurred also in some re-
cent work !’ of the present author where certain SO(7)-Clif-
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The relation between quaternionlike algebras and cross products of vectors is demonstrated. A

classification of all cross products of vectors is given.

I. INTRODUCTION

During the preparation of our paper on quaternionlike
algebras, ' Professor José Adem suggested that those consid-
erations seemed to be closely related to the problem of a
definition of a cross product of vectors in a vector space of an
arbitrary (finite) dimension. The purpose of the present pa-
per is to find this relation.

There are several possibilities to generalize the usual
cross product of vectors in three-dimensional real Euclidean
vector space R® to arbitrary finite-dimensional vector
spaces. Thus according to Eckmann,” Whitehead,> and
Zvengrowski*® (see also Refs. 6 and 7), one can define a
vector cross product in n-dimensional real Euclidean vector
space R" to be a mapping

P:R"=R"X-*XR"->R",
r times
satisfying the following axioms.
(a;) P, is a continuous mapping of R*" (1<r<n) into

1<r<n,

R".

(b)) P.(vy,..0.) v, =0, for every set of vectors
(vyye-oU, YER™ and i = 1,...,7.

(1) P, (0,000, ) P, (0,000, ) = det(v;+0;), 6, = 1,75
for every set of vectors (v,,...,0, JER™".

Here a dot stands for the usual Euclidean scalar product of
vectors in R”.

Another, more “algebraic” definition of the cross prod-
uct of vectors can be extracted from the works given by
Brown and Gray,® Gray,’ and Diindarer, Giirsey, and Tze'®
(see also Ref. 6). According to these works we have the
following definition: Let ¥ be an n-dimensional vector space
over a field F of the characteristic %2 and let (-,-) be a
nondegenerate, bilinear, symmetric form on V. A vector
cross product in ¥ is a mapping

PV =VX-XV-V, I<r<n,
r times
satisfying the following axioms.
(a,) P, is an r-linear mapping of V" (1<r<n) into V.
(by) (P,(vy,...,0,),0;) =0 for every set of vectors

(Vg0 )EV T and i = 1,...,r.

2 On leave of absence from University of Warsaw, Warsaw, Poland.
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(cy) (P, (vy5ee0s0, ), P (04,00, ) ) = det({v;,0,)) i, j
= 1,...,r, for every set of vectors (v,...,v,)eV".

Then the following important theorem holds (see Refs.
2-10).

Theorem 1: The vector cross product satisfying the ax-
ions (a,)-(c,) or (a,)—(c,) exists if and only if (1) r=1
and n even; (2) r =n — 1 and n arbitrary; (3) r=2 and

n=237,(4) r=3and n =4,38. [ |
Explicit formulas for the vector cross products are also
known. >89

The cases of r =2 and n = 3,8 or r =1 and n = 8 are,
perhaps, the most interesting ones. Thus the vector cross
product in R? with =2 is the usual cross product. The
vector cross product in R ® with 7 = 3 can be defined in an
elegant way in terms of octonions.*>%-'® Moreover, Diin-
darer et al.'® were able to give a compact, unified, covariant,
and explicit formulation of various “generalized vector cross
products” in R ® (compare also with Kleinfeld''). Then the
cross product of vectors in R 7 with r = 2 can be defined in
terms of pure octonions.>%12-14

Now it appears that in the case of » = 2 the axioms (a,)-
(c,) for P,in R" are equivalent to the following axioms. 214

(a;) P, is a bilinear and skew-symmetric mapping of
R" X R" into R".

(b3) Py(v,0,) vy = Py (v,,0,) v, =0,

for any (v,,0,)€R” X R".
(c3) = Py(v,P,(vw)) = (v-w)v — (v-v)w,

for any v,weR" X R".
In the present paper we consider the vector cross prod-
uct satisfying the conditions that generalize in a natural
manner the axioms (a,)—(c;).

Il. CROSS PRODUCT OF VECTORS

Let ¥ be an n-dimensional vector space over the num-
ber field F ( = R or C). Then a mapping - X : VXV~ Vis
said to be a cross product in Vif there exists a bilinear form
on V,(-|*): ¥V X¥V—F such that the following conditions
hold.

(a) The mapping - X -:¥ X V-V is bilinear and skew
symmetric.

(b) (vXw|v) =0, for any v,weV.

(c) uX (vXw) = (¢|w)v — (u|v)w, for any u,p,weV.

A bilinear form on V,(-}-): ¥ X ¥ F, for which (b)
and (c) hold true, is called a bilinear form associated with
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the cross product - X -. If - X - is the usual cross product in
R 3 then the properties (a), (b), and (c) are satisfied with
(+]*) as the usual scalar product in R *.

First we prove a simple Proposition.

Proposition 1: The conditions (a) and (b) are equivalent
to (a) and (b’), where (b’) reads

(b)) (vXw|u) = (uXv|w), forany u,yweV.

Proof: Utilizing (a) and (b) to ((# + w) X v|u + w)one
finds (b’). Thus (a), (b) =>(a), (b’). The implication
(a),(b’) = (a), (b) is evident. The proof is completed. W

Employing Proposition 1 we get easily that (a), (b),
and (c¢) yield the following analog of the conditions (c,) or
(cy):

(vXwlrXw) = (v|v) (wlw) — (v|w)?, forvweV. (1)

Now we prove the following proposition.

Proposition 2: Let V be an n-dimensional vector space
over F and let f be a bilinear skew-symmetric mapping of
V X Vinto V. If there exists a bilinear form g: ¥ X ¥'—- Fsuch
that

Slu, flo,w)) = g(u,w)v — g(u,p)w, for any u,v,wev,
(2)
then g is a symmetric form and, for n> 1, g is uniquely de-
fined by the mapping /.
Proof: If n = 1, then every bilinear form on v is symmet-
ric. Consider # > 1. Let e,,...,e, be a basis of V. We set
gle,e;) =g;,€F (3)

and
f(eisej)=zckij €p» Fsckij= —iji’ (4)
%

where small Latin indices are assumed to run through 1,...,n.
By applying Eq. (2) to the basic vectors e; with the use of
(3) and (4) one gets

chim ijk =8 5{,'—81'1' 611( , (&)

where 6’,- is the Kronecker delta. Contracting both sides of
the formula (5) with respect to the indices /, k, we obtain

;C’,,,, C™=—(n—1)g;. (6)
Sincen>1,
1 m
8 =8i= —n—lg:,,Cli'" e (M
Thus the proof is completed. u

As a consequence of Proposition 2 one has immediately
the following Corollary.

Corollary I1: Iffamapping * X : ¥ X V- Visacross prod-
uctin ¥, thenabilinear formon V, (-|*): ¥ X ¥ F, fulfilling
the condition (c), is symmetric and if dim V> 1, then (+|-)
is uniquely defined by - X -. [ ]

Ifdim V = 1, then (evidently) any bilinear form on Vis
symmetric and it is associated with the cross product in V
which is now uniquely defined, i.e., v X w = 0 for any v,weV.
If dim ¥'> 1, then a bilinear form associated with a cross
product in V is symmetric and it is uniquely defined by the
given cross product.
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Let us recall the definition of a quaternionlike algebra’
(ql algebra). An (n + 1)-dimensional algebra (n>1) Q
with unity e, over F'is said to be a quaternionlike algebra (gl
algebra) if it is associated and if there exists a decomposition

Q=Fe, 0V, (8)

where ¥V is an n-dimensional vector subspace of Q such that
for every vector veV, vveFe,.

As it has been shown in Ref. 1, if some algebra, associ-
ative or not, admits a decomposition of the form (8), then
this decomposition is unique. We need the notion of equiva-
lent cross products. Let v, v, be n-dimensional vector spaces
over Fandletf;: VX V|-V, f,: Vo X V,— ¥, be cross prod-
uctsin V', V,, respectively. Then the cross product f, is said
to be equivalent to the cross product f, if there exists an
isomorphism i: ¥, — ¥, such that

SLliviw) = i( f, (vw)),

Now we can prove the main theorem of this paper.

Theorem 2: Given an (n + 1)-dimensional gl algebra Q
over F that decomposes according to (8), we define two
mappings g: ¥ X V—Fand £ V X V- V as follows:

vw= —g(vw)e, + flv,w), (10)
Then f'is a cross product in ¥ and g is a bilinear form asso-
ciated with f.

Conversely, given an n-dimensional (73> 1) vector space
‘I7'overF, across product in ”17, X VXV ‘I;', and abilinear
form (-|-): ¥ X V- F associated with - X -, there exists a
unique (with the precision to an isomorphism) (n + 1)-di-
mensional ql algebra Q over F that decomposes according to
(8) admitting an isomorphism J: ¥— ¥ such that

for any v,weV,. 9)

for any v,weV.

SD, i) = i(DX W), for any b,ieV, (11)
i.e., * X * is equivalent to £, and
gUib,il) = (i), for any b,iveV, (12)

wherethemappingsf: ¥V X V— Vandg: ¥V X V- Fare defined
by (10); moreover if dim ¥ = n> 1, then Q1is uniquely (i.e.,
with the precision to an isomorphism) defined by the pair
(¥, -X-).

Proof: Let Qbe an (n + 1)-dimensional ql algebra over
F thatdecomposes according to (8),andletg: ¥ X V- Fand
SV X V=V be the mappings defined by (10). From the fact
that Q is an algebra it follows that g is a bilinear form on ¥,
and fis a bilinear mapping of ¥ X ¥V into V. Since Q is a gl
algebra, vveFe,, for every veV. Hence, by (10), flv,v) =0
for every veV. Consequently, as f; ¥V X V-V is a bilinear
mapping, it is skew symmetric.

Since @ is an associative algebra,

(v,v)w=u(vw), forany uuv,weV. (13)
From (13) and (10) it follows that

gl flu,v),w) = glu, f(v,w)), for any uv,weV, (14)
S(fup),w) — flu, flv,w)) = g(u,v)w — g(v,w)u,

for any u,v,weV. (15)

Let e...e, be a basis of V and let g;€F,
F2C*,; = — C*, be the numbers defined by (3) and (4);
small Latin indices are assumed to run through 1,...,n. The
formula (15), when applied to the basic vectors ¢;, yields
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C"+C'Y, C™ ) =g,; 8 —gu 8. (16)

- z(clim

Contracting both sides of (16) with respect to the indices /,
k, and then with respect to /, i, one finds

—Z(C’,m C
- Z(Clzm C™ + Clim C™;) =8y — NG -
Lm

Writing (18) for & = / and adding the results to (17), we get
(n+1)(g;; —8:) =0. Hence g;; = g;. Thus we arrive at
the conclusion that the bilinear form g is symmetric. Execut-
ing the cyclic sum with respect to »,v,w for both sides of (15)
one obtains the “Jacobi identity,”
SUfu0),w) + f(flw,u),v) + f( flo,w),u) =
for any u,v,weV.
Finally, from (15) and (19) one finds

S, flw,u)) = g(u,v)w — g(v,w)u,

mjl'*'CIIm C";)=ng;— 8, 17

(18)

(19)

for any u,v,weV.
(20)

The condition (14) for ¥ = v yields

glv, flu,w)) =0, for any v,w,eV. (21)

Comparing (20) and (21) with (c) and (b), and also em-
ploying the symmetry condition of g, we conclude that the
mappingf: ¥ X V- Visacross productin ¥and the mapping
g: V X V- F appears to be a bilinear form associated with f.
Thus the first part of our theorem has been proved.

Now let ¥ bean n-dimensional (n> 1) vector space over
Fand let the mapping - X *: ¥V X V- Vbe a cross product in
V moreover, let the mapping (-|-): VXV~Fbea b111near
form associated with - X*. Let us define : = Feo V. We
have Q = Fe, @ V, where e: (1,0)eF e Vand Fis the vector
subspace of F @ AI;'consisting of the vectors of the form (0,0),
where 7€ ¥. Define a multiplication on Q as follows:

0 X 03((a,0),(b,w)y—>(a,b) (b,w)eQ,
where
(a,0) (b,): = (@b — (D|W),aib + b¥ + X D) (22)

[compare (22) with Refs. 2 and 6]. It is a straightforward
matter to show that Q with the above defined multiplication
(22) constitutes an (# + 1)-dimensional ql algebra over F.
Let i: V— V be the natural isomorphism of ¥ onto ¥ defined
as follows:

i: V3 —(0,0)eV. (23)
Then, from (22) and (23) we obtain
(0,0) (0,)

=(— (3|@),bX @) = — (B|@)(1,0) + (0,0 X )

= — (B|lW)e, + i(IXib), forany b,weV . (24)

Comparing with (10) one gets (11) and (12).

Now let Q, = Fe§"’ @ ¥, be a ql algebra such that there
exists an 1somorphxsm i: V-V, for which the analogs of
(11) and (12) hold. Define an isomorphism #,: Fel'’ — Fe,,

ip(ael?) = ae,, for every acF. Then it easy to check that the
mapping i, ® ioi;” ! is an isomorphism of the gl algebra Q,
onto the gl algebra Q.
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Finally, utilizing Corollary 1 we complete the proof. B

The main consequence of Theorem 2 is that there exists
a 1:1 correspondence between the class of all nonequivalent
vector cross products in vector spaces of dimension # > 1 and
the class of all nonisomorphic gl algebras of dimension
n + 1> 2. Therefore, employing the results of our previous
paper’ concerning the classification of gl algebras, we arrive
at the following conclusion.

A cross product in an n-dimensional real vector space
V, X : VX V-V, belongs to one of the following types:
(I) a trival cross product, i.e.,

vXw=0, foranyuv,weV; (25)

(II) anilpotent cross product of the nilpotency class 2, i.e.,a
nontrivial cross product such that

uX (vXw) =0, foranyuuvweV; (26)
(III) there exists a basis e,,...,e,, of ¥ such that
e, Xeg =0, e,Xe, =¢€,€,,
(27

€,=+1 af=1,..n—1;
(IIT') n is odd and there exists a basis e,,...,e,, of ¥such that

e, Xeg=0, e,Xe€u_1y2,4 =64
e, Xey= —€,_Nn244 (28)
af=1,.n—1 A=1,.(n—-1)/2,
(IV) n =3, the usual cross product,
e Xe;=e; e3Xe =¢e), eXe=e, (29)

for some basis e, e,, e5; (IV’) n = 3 and there exists a basis
ey, €5, €3 such that

e Xe,= —e; e;Xe =@, e,Xe =ée. (30)

Employing Proposition 2 one can easily find the bilinear
forms associated with the above listed cross products.
(I) For n = 1 there exists a nonzero vector ¢, such that

(ellex) =+,
or one has
(v|w) =0, for any v,weV. 31)
For n> 1, Eq. (31) holds.
(I1) The formula (31) holds true.
(III) (e, |eg) = (e le,) =0, (e,le,) = —1,
af=1,.n—1
(IIT') (e, leg) = (e le,) =0, (e,le,) =1,
af=1,.,n—1.
(V) (e;le)) =6, 6j=123.
(IV') (e;le)) = €65, i =123, €=€6=—1,

€= 1.

In the case of complex V we have the types (I), (II),
(I1I), and (IV) [for n = 1 there exists a nonzero vector e,
such that (e,|e;) = 1, or one has (31)].

Remark: Given a cross product - X -: ¥ X V-V, the al-
gebra (¥, X +) appears to be a Lie algebra isomorphic to the
Liealgebra (¥,[-, 1) induced by @ = F e Vwith multiplica-
tion defined by (22). An isomorphism is given as follows:
V35-4(0,5)€¥. (For the notation see Theorem 2. Regard-
ing induced Lie algebras, see Ref. 1.)
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Concluding the present paper we would like to deal with
two problems.

The first one concerns the possibility of generalization
of the cross product of vectors on the vector spaces over an
arbitrary field F. Employing the results of our recent work'>
one can easily realize that such a generalization does exist for
an arbitrary field F of the characteristic “not 2" and, in fact,
it is almost “automatic.” In particular, the main theorem of
the present paper, i.e., Theorem 2, holds true in that general
case. However, the proof of this theorem given here must be
slightly changed to be valid generally. Namely, the formula
(7) should be replaced by the formula

gi=8i=—2CK.C, k#j (7)

which follows from (5) or (20). [Thus the formula (20)
yields the symmetry of the bilinear form g and we do not
need the formulas (16)-(18).]

The canonical forms of all possible vector cross prod-
ucts can be written down in the case when a field F'is of the
characteristic “not 2” and, if n#3, also “not a divisor of
n — 3”(for details, see Ref. 15).

The second problem we would like to deal with concerns
arelation of our cross product of vectors to Clifford algebras.
This problem in all its details has been considered in Ref. 15.
Now we cite the main results obtained. Given an (n + 1)-
dimensional (n>1) quaternionlike algebra Q over a field F
of the characteristic “not 2” which decomposes according to
(8), one defines the quadratic space (V, g), where g: V- Fis
the quadratic form on v defined by

v =gq(v)e, foranyveV. (32)

Then we construct the Clifford algebra C(V,q) for (V,q)
(see also Ref. 16). From the universal property of Clifford
algebras it follows that there exists a unique homomorphism
@: C(V,q) —» Qsuch that @(v) = vfor any veV. In particular,
for any v,weV, ‘

p(vlw) = vw = — g(v,w)e, + flv,w)eQ, (33)

where the symbol # stands for the multiplication in Clifford
algebra C(V,q), and the mappings g: ¥V XV-F and f
V X V— Vare the same as in the formula (10). The mapping
is a cross product of vectors in ¥ and g is a bilinear form
associated with /.

Another interesting question arises: is the Clifford alge-
bra C(V,q) a ql algebra? The answer to this question follows
from the general proposition (see Ref. 15).

Proposition 3: Let V' be a vector space of dimension n’
over a field F of the characteristic “not 2” and let¢’: V' - F
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be a quadratic form on V'. Then, the Clifford algebra
C(V’,q') for the quadratic space (¥’,¢’) isa ql algebra if and
only if n’<2. Moreover, for n’ = 1 every ql algebra over Fisa
Clifford algebra over F; for n’ = 2 there exists exactly two
nonisomorphic gl algebras of dimension four over F which
appear to be nonisomorphic to a four-dimensional Clifford
algebra over F. The structures of these ql algebras are de-
fined as follows:

(1) Q=Fe,0V, dimV=3
eiej = O, i,j= 1,2,3;
(2) Q=Feo$ I/, dim V= 3,

€6, =¢ee,=0, ese;=¢e,

e;e; =0, €€y =e), - €63= — €y

where the set of vectors (e,, e,, ;) constitutes a basis for V. l

Consequently we conclude that Clifford algebras over a
field F of characteristic 52 define vector cross products ac-
cording to the “natural” scheme given in Theorem 2 if and
only if their dimension = 2 or 4.
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The properties of the Clifford algebra are concisely summarized in four identities that extend
the usual Lie algebra to the entire algebra. This formulation may be used to analyze the general
structure of the Clifford algebra, but it is found that the symmetry properties are not consistent
with the geometrical content. The extension of the graded Lie algebra to the entire algebra
generates a geometrical algebra which simplifies the analysis of the structure of the Clifford
algebra. This produces a direct proof of the fundamental theorem that relates the Clifford and

Grassmann algebras via the Pfaffian.

I. INTRODUCTION

The abundance of terms contained in an arbitrary Clif-
ford element conceals a wealth of geometrical information
describing all relative knowledge of a set of vectors. It is easy
to study its structure in simple cases, but for more general
elements it is necessary to resort to implicit statements of the
geometrical content. In this paper a nonrecursive technique
to analyze a Clifford element is developed, and this will natu-
rally lead us to the fundamental theorem of Clifford algebra.

The usual approach to analyzing the structure is via the
Lie algebra of the Clifford algebra, which corresponds to the
commutator algebra, since we are dealing with an associ-
ative algebra. It is well known that this is the Lie algebra of
the corresponding orthogonal group. The remaining struc-
ture of the Clifford algebra is given by the anticommutator
bracket, which, together with the commutator bracket, pre-
sents the entire structure in four identities. The restriction of
these identities to simple Clifford elements presents, in Sec.
II, a concise summary of the properties of the orthogonal
group.

The structure of arbitrary Clifford elements can be ana-
lyzed using what has been called the multivector formalism.
Basically, this approach builds up any member of the algebra
from the sum of products of Clifford vectors, as is done using
the Feynman slash notation for the Dirac algebra, a well
known Clifford algebra. The structure of a multivector can
be analyzed by repeated application of the commutator and
anticommutator brackets. Such analysis is not performed on
arbitrary Clifford elements simply because the bracket prod-
ucts do not express the geometrical content of the multivec-
tor in a consistent fashion. To progress, we must abandon the
ordinary brackets and look at the generalized brackets. The
generalized or graded commutator for an associative algebra
defines the graded Lie algebra or, in the case of the Clifford
algebra, the semigraded Lie algebra. Introducing the graded
anticommutator again gives a complete decomposition of
the Clifford product and we will see in Sec. III that these
products are consistent in the geometrical operations that
the products represent.

This geometrical approach does not alter the inductive
analysis referred to above, it only clarifies our perception of
the operations. The study of multivectors without using in-
duction techniques becomes feasible, up to a point, because
of this geometrical insight. It also becomes obvious that the
Pfaffian is the required object to represent the structure of
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the multivector algebra. This theorem is proved in Sec. IV
using the generalized brackets.

The Pfaffian plays, in the Clifford algebra, a role analo-
gous to the determinant in the Grassmann algebra. The
properties of both algebras correspond to related properties
of the mathematical objects used to define them except that,
in the case of the Clifford algebra, this object is more compli-
cated than in the analogous Grassmann case. This extra
complication is caused by the semigradation of the algebra
and is studied in a separate paper’ which deals mainly with
the associativity property. In the Grassmann algebra this
property leads to the Laplace expansion of a determinant,
and in the Clifford case it leads to an expansion of the Pfaf-
fian analogous to the Laplace expansion.

. PROPERTIES OF THE CLIFFORD ALGEBRA

The presentation of the Clifford algebra given here is
taken from Ragevskii,” since this approach reveals the exteri-
or subspace and introduces the concept of a versor most di-
rectly. The Clifford algebra will be assumed to be finite and
related to a positive definite quadratic form, so that we use a
vector space of dimension n, denoted by R”, along with the
standard metric. Following the notation of Porteous,’ the
universal Clifford algebra over R” is denoted by a lowered
index R,,. The basis of R", e,,...,e,, is identified with the
basis of the vector subspace of R, denoted by R{", and the
quadratic form of R, is defined by a symmetric, bilinear
mapping on R", ( , ), called the interior product. The sca-
lar subspace is taken to be the real numbers, R‘” = R. In the
following we denote the Clifford product by the absence of a
product symbol and an arbitrary element of R, by capitals.
Lowercase letters denote scalars and boldface letters are the
vectors of R{".

The following are properties of the Clifford algebra, giv-
en by Rasevskii:

(A4 B)C=AC+ BC, (2.1a)
C(4A+ B) =CA + CB, (2.1b)
(AB)C = A(BC), (2.2)
aB = Ba, (2.3)
aa = (a,a). (2.4a)

Property (2.4a) will be called the contraction property, and
it is this property that characterizes the Clifford algebra.
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Introducing the metric tensor, (e;,e;) = g;, then (e; + ¢, )?
in (2.4a) gives the Jordan relation®

(2.4b)

This relation contains the fundamental, geometric property
that orthogonal vectors anticommute, since g; = 0 for i/
with an orthogonal basis. This property may be used induc-
tively to generate the basis of the entire algebra, called the
polyvector basis.

A simple polyvector is defined by RaSevskii as complete
antisymmetrization of vectors under the Clifford product.
Using the alteration operation Alt, a basis polyvector is de-
noted by

ee; +ee =2g;.

1
€linigni,] T Alt —e

R

r

=—1— 2 o(m)e, e, e, (2.5a)
st ™ im L

where S” is the set of permutations of 1,2,...,»and o(7) is the

sign of the permutation 7.

There are C = (}) basis polyvectors of tensor degree
and these form a basis of the subspace R{”. Members of this
space are called polyvectors of valence . Since there are no
polyvectors having valence greater than », R, contains 2"
basis polyvectors. Thus we may view the Clifford algebra as

an aggregate of vector spaces, R, = @ :'=0RC7 , and denote
elements of the polyvector subspaces by suffixing the brack-
eted valence of the polyvector.

Hence the grading over the polyvector basis of R, is
denoted by

A =A(0)+A(l)+ +A(n),
where
AVeR,

and any polyvector part may be expanded on the polyvector
basis as

A" = 2 ai'i""'.’e[,.”,.w‘,-’], a""eR.

h<hy< <,
The scalar part is taken to be simply 4 ® = aeR. Also we
denote the semigraded elements by A‘*’eR{*’, where
R{*’ denotes the subalgebra of R,, consisting of polyvectors
of even valence and R, ~’ is the subspace of odd valence
polyvectors.

The construction of the basis polyvector (2.5a) pro-
duces a Grassmann form in the tensor algebra. For Clifford
forms we need to consider basis elements that are graded in
the tensor representation because of the contraction proper-
ty. For this purpose we define the versor of degree r or r-
versor to consist of the Clifford product of r vectors:
a,,a,,...,4,, 2,R{". These may have many different valence
polyvector parts given, in general, by the Z, graded element

A=2a2,.8, =AP A4~ 4 ... 4 glUrmedd), (2.6)
Versors consisting of only single valence polyvectors,
A = A", are completely antisymmetric and will be called
exterior.

The final property of the Clifford algebra, given by
Rasevskii,” is simply the statement that the polyvector basis
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is isomorphic to the basis of the Grassmann or exterior alge-
bra:
Alt 8182' * 'a’ =

> . |a'i'a§’-"ai'|e[i..i, ..... i) (2.5b)

LY

where |a}a%- - -a/| is the determinant of the matrix of com-
ponents ||a%||, j = 1,...,n, of the arbitrary rank-1 tensors a;,
i = 1,2,...,r. This is the exterior component 4" of the multi-
vector (2.6). To find the structure of Clifford algebra we
must construct the remaining polyvector components of the
versor (2.6) in terms of functions of the vectors a,,a,,...,a,.
Chevalley® and RaSevskii® both give an algorithm to produce
this structure given the components of the vectors a,,a,,...,a,
over an orthonormal basis. What we wish to arrive at is an
explicit statement of the versor expansion of (2.6), which is
independent of a basis.

Having defined the main elements of the algebra, the
versor and the polyvector, we now move to the Lie algebra,
which is extended to the entire Clifford algebra through the
use of the anticommutator product.

The commutator and anticommutator products will be
denoted by square brackets and braces, respectively. Since
the Clifford algebra is associative, the commutator algebra is
a Lie algebra satisfying the distributive property and the fol-
lowing derivation:

r

[4.B,B,-'B,] = 3 B,B,"'B,_,[A,B,]B,, "B,
i=1

For r = 2, this may be polarized into the Jacobi identity
and an identical relation for the anticommutator:

[4,{B,C]] = [[4,B],C] + [B,[4,C]], (2.7)

[4,{B,C}] ={[4,B],C} + {B,[4,C]}. (2.8)
Alternative expansions for both of these bracket relations
may be proved by expansion:

[A,[B’C] ] = {{A,B},C} - {Br{A9C}}) (2'71)

[Aa{B)C}] = [{AyB},C] - [B!{A9C}]' (2'81)
These are the required four identities that express all rela-
tions between the two brackets.

These relations can be used to decompose any Clifford
element using the multivector formalism. That is, an arbi-
trary Clifford element is equivalent to a sum of versors and
each versor can be expanded via polarization of each vector
product. For example, applying the identities above to vec-
tors reproduces the Gibb’s vector identities in a more general
form that applies to an arbitrary dimension space:

[a,[b,c]] = [[a,b],c] + [b,[a,c]]
= {a,b}c — {a,c}b, 2.9)
{a,[b,c]1} = {[a,b],c}. (2.10)

The usual Gibb’s identities are attained by restricting our-
selves to R, and defining the dot and cross products:

ab =1 {ab}, (2.11)
aXb=£e[3,2_|][a,b], (2.12)
where e(;,,, the basis polyvector of valence 3 or volume
form, belongs to the center of R;. It is interesting to note that
the axial vector (2.12) cannot be defined without some
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knowledge of a basis of R;. Thus in order to be able to inter-
pret the geometrical content of the Gibb’s identities, we have
placed ourselves in the double bind of being restricted to
three dimensions and having basis-dependent identities.
The Clifford algebraic approach to escape this bind is
simply to interpret the polyvectors as geometric objects. The
bivector, denoted using the wedge product of two vectors,

aAb=1[ab],

represents the planar subspace containing the two vectors,
unless they are colinear. At this stage it is not easy to see that
the bivectors are generators of rotations, but it is easy to
verify, using (2.7), (2.9), and (2.11), that the Lie algebra of
the subspace R{? is the Lie algebra of the orthogonal group:

[aAb,eAd] =1 [a,[becAd]] — 1 [b,[acAd]]
=2(bc)aAd —2(bd)aAc

—2(a¢c)bAd + 2(ad)bAc. (2.13)

Other elements of possible interest that we could decom-
pose, such as the anticommutator of bivectors, are left to Sec.
II1. First we analyze the versor of degree 2 to find its “com-
plex” exponential form. Evaluating the square of the
sum of two vectors introduces the cosine function, a‘b

= |a|+|b|cos 6, where |a|> = a® and 6 is the angle between a
and b. Squaring a bivector and evaluating using the Clifford
identities gives (aAb)? = — |a|?/b|® sin® 6, so that we may
define the “unit” bivector B = a Ab/sin 6, where 4 = a/
|a|. This enables us to evaluate a two-versor in R,, as

ab=ab +aAb=|a||b|(cos@ + BPsin ). (2.14)

The element in brackets is the required exponential
ab = exp(B @6) and in R, it is identical, apart from sign, to
the quaternion versor since R{ ¥’ =H, the quaternion alge-
bra.

Using the Clifford identities and the multivector formal-
ism, we have seen how easy it is to expose a powerful geomet-
ric algebra from fundamental algebraic concepts. The main
importance of this approach is that the results are basis inde-
pendent, the proofs relying only on the symmetry properties
of the Clifford product. For products involving only vectors,
the brackets have a simple geometric interpretation. But this
breaks down for higher valence polyvectors, making the
multivector decomposition impractical for Clifford ele-
ments of arbitrary valence. For example, the Gibb’s scalar
triple product, represented by (2.10), is a geometrical
expression of the volume form. Hence the geometrical inter-
pretation of the anticommutator depends upon the valence
of the polyvector products. The graded products of Sec. III
rectify this situation.

fll. GRADATION OF THE CLIFFORD ALGEBRA

Similar to the Lie algebra, a graded algebra for an associ-
ative algebra is defined using the graded commutator.® This
also holds for semigraded algebras, so we define the graded
commutator, denoted by a circle, as

APOBO =1 (AVBY — (—1)"BWAM).  (3.1)
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This will be called the superproduct and produces a Z,-grad-
ed Lie structure:

A(:t)oB(i)ER£'+)’ A(i)oB(IF)GR;-),

APOB® = _ (_1)"BWog ", (3.2)
A "’O(Bgs')Bgsl)--'Bf"))
= ﬁ (=TT g Eag ...
=1
XBO U ACBIBI B (33)

The superproduct generates the semigraded Lie algebra
of the Clifford algebra. Further subalgebras are again given
by R{¥ and R, but these reduce to the ordinary Lie subal-
gebras. We extend the graded subalgebra to the entire Clif-
ford algebra by defining the generalized exterior product
which is denoted by the wedge—bar symbol:

APAB® =1(AVBY +(—~1)"BYA"). (34)

This product has the same commutivity as the Grassmann or
exterior product:

AOABD =(—1)"BOALD. (3.5)

In general, the generalized exterior product has the follow-
ing graded polyvector representation:

A (r)KB(S) =C =CU+» + Clr+s=4
4o C[(r+s)mod4].

This is a generalization of the exterior product since it
contains the exterior polyvector part C” + = . Allterms C'©’,
where k < |r — 5|, are zero, since C'!"~*D is the lowest va-
lence polyvector part of 4” B and hence the series ter-
minates at the polyvector of valence r+s

— 4[min(r/2,5/2)], where [x] is the integer part of x. The
remaining polyvector components of the Clifford product of
A and B are given by (3.1), thus giving a complete
decomposition of 4” B, The lowest valence polyvector
part, CY"~* ' may be contained in either (3.1) or (3.4).

The graded derivation (3.3), for the case r = 2, leads to
the graded Jacobi identity and a similar expression for the
generalized exterior product:

A (r)o(B(S)oc) = (4 (Nop (S))OC

+ (= D"BWo(4eC),  (3.6)
AP(BWAC) =(4"°BP)AC
+(-1)"B (S)K(A "’OC). (3.7)

Again we provide another two identities that may be
proved by simple expansion:

APABONC)=(APAB)AC
— (~1)"B¥o(4 (), (3.6")
AP(BAC) = (AP ABP)oC
—(=1"B®o(4"AC). (3.7)
The first expresses the essential property of nonassociativity
of the generalized exterior product. Note that these identi-
ties are actually semigraded and so can be applied to versors
whose degree replaces the valence of the polyvectors.
We reduce the four identities to relations for vectors
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and bivectors. Setting 4=a and C=Db in (3.6b) gives
a/ (BAb) = (aAB) Ab, which may be written as

aA(bAC)= —bA(aAC). (3.8)

Also, setting » = s = 1 in (3.6) and (3.7) gives
ao(boC) = — bo(ac(C), (3.9)
(ab)C=12a°(bAC) +bA (acC), (3.10)
(aAb)AC =2aA (bAC) + ac(boC), (3.11)
(aAb)oC=2a°(bAC) —bo(aAC), (3.12a)
=aA (boC) —bA (acC), (3.12b)

where (3.10) has been used twice in (3.12a) to derive
(3.12b). Here (3.8) and (3.9) formalize identities employed
by Greider®: ao(a°C) =aA (aAC) =0.

This may be generalized to arbitrary simple elements
using equations (2.8); [{4,{4,B}] =0 and {4,[4,C]} =0.
These ordinary bracket identities have graded representa-
tions that depend on the semigrading of 4 in the following
way:

A°(49C) =AN(AAC) =0, if A=A4'""; (3.13a)

AN (A°C) = A°(ANC) =0, if A=A'*. (3.13b)

The vector and bivector identities provide a complete set
of relations that can be used to decompose any multivector
from the left. This process is aided by the geometrical inter-
pretation of the graded products that is displayed in the iden-
tities. For example, a A C'” is the exterior or valence r + 1
partofaC'” , whileaoC'” is the contracted or valence r — 1
polyvector part. This exterior property of the wedge-bar
product for vectors has been used by Jacobson® and Hes-
tenes'® to inductively define an exterior multivector of de-
gree r:
=e, Ale, A (e,  Ae)). (3.14)

This is indeed exterior since, by (3.8), any exchange of vec-
tors brings about a change in sign. Because of this alternating
property, we expect (3.14) to be identical to the basis poly-
vector (2.5) in the Clifford space. In fact, the contraction
property cancels any difference between the two definitions
of this element, and so there is no need to distinguish be-
tween them. Hence it is possible to define an exterior product
in Clifford algebra without resorting to complete antisym-
metrization. This product is denoted by the usual wedge
symbol,

A(r) =a]/\a2/\ --'/\a, =alx(azx"'x(ar—l Kar))'

The following graded derivation for basis polyvectors
may be proved inductively using (3.10):

€,

igpeniy ]

r

€%, i} = z (- l)j—lgiije[i, ..... (AR D

=

(3.15)

where the index denoted with a circumflex is omitted.

The identities (3.8)—-(3.12) carry the same information
as similar identities given, using the ordinary bracket prod-
ucts, but are geometrically easier to decipher. For example,
considering either (3.8) or (3.11) with C = ¢ gives

aA (bAc) = (aAb)Ac. (3.16)
This is immediately recognized as a three-volume element
and shows that in R, the generalized exterior product is asso-
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ciative and thus defines an exterior product. In R; it is equiv-
alent to the scalar triple product with the transformation
between the two being carried out by the duality transforma-
tion. This is multiplication by ey; , ,; which commutes in R,
but changes the gradation of the products in (3.16).

Using this geometrical identification of the graded prod-
ucts, it is now easier to analyze the anticommutator of two
bivectors that, in this case, corresponds to the generalized
exterior product. Using (3.11), we find that this contains
both the exterior part and the scalar part of the polyvector
product:

(aAb)A(cAd) =aAbAcAd— (axc)(bd) + (a:d) (bec).
Thus the evaluation of the square of a bivector is simply
(aAb)?= — (a®® — (a'b)?) = — a’b*sin? 4,
where @ is the angle between a and b. Apart from the nega-
tive sign, this is the_ norm of the Clifford algebra, so the bivec-
tor “length” is [bAc| = |b| |c|sin &.
The graded identity that reproduces the triple vector
identity, represented by (2.9), is given by (3.10) withC = ¢:

ao(bA¢) = (ab)c — (a«c)b. (3.17)

This identity exposes the triple vector identity as a sim-
ple statement of the graded derivation. The action of the
bivector on the vector a under the superproduct is immedi-
ately recognized as a rotation of a by 90°, for if we try to
contract (3.17) with a, then by (3.13a) we find they are
orthogonal: ac(ac(bA¢))=0. Of course, the rotation is
within the plane of the bivector and, by setting a = b, we find
that the rotation has the sense of b moving towards ¢. The
geometrical action of the superproduct of a bivector with an
arbitrary element may be analyzed using (3.6'), with
A=B=B?,

Bo(BoC) = (BABYAC—BA (BAC)

= — |B|>)C—BA(BAC). (3.18)

Using (3.13b), we find that — BBC is a polarization of
C into components with even or odd numbers of vectors
lying in the plane of the bivector B. If C = BoC’ then we see
that (3.18) is a rotation of 180° since, by (3.13b), BoC’ is
already contracted. Therefore BoC is a selection of that part
of C with a single vector in the plane of B and this vector is
rotated by 90°. This is also the interpretation of the Lie prod-
uct of bivectors (2.13). The remaining terms in the product
BC are the semigraded exterior parts BA C, and we can use
the polarization of (3.18) to select either part of C. With
respect to the unit bivector B® = b A ¢/|bA ¢/, we define the
parallel or contracted component of A4,

A= — BPo(B%od) =4 (BY4B? + 4).

For example, if A = a then this is the projection of the vector
onto the plane of bAc. The perpendicular part is
A =A—A)' = —BPA(BPAA).

We can now easily interpret the transformation law,
A’ = VAV ~, where ¥V is two-versor, as a rotation. It is de-
composed using the commutation relations 4'°B®
=A"AB®=0in (3.2) and (3.5):
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A'=exp(— B?0/2)A exp(B?6/2)

=A'+ A exp(B?0)

=A*+A4(b@) + 40(BAR),
where we have used exp(B ?6) = bé = bo¢ + bA&. This is
recognized as a rotation of vector components lying in the
bivector plane through angle §. For vectors it is identical to
the usual vector notation apart from the generalized triple
vector product (3.17) which applies in a vector space of
arbitrary dimension. The geometrical identification of the
graded products allows for a concise evaluation of a rotation
for any multivector. For more general versors ¥, Radevskii®
has shown that the transformation 4’ = VAV ~'is an auto-
morphism of the Clifford algebra defining the orthogonal
group, proper or improper, for the versor being, respectively,
of even or odd degree.

The differences between the identities for the graded
and ordinary products are only cosmetic, but it is the
straightforward expression of the geometrical content that
makes the graded products easier to manipulate. The geo-
metrical description of the graded products, in general, is
simply that the superproduct contains those parts of the Clif-
ford product that consist of an odd number of contractions,
while the generalized exterior product selects pairs of con-
tradictions including, formally, the exterior part. This is
consistent with the supersymmetry properties of the graded
products and the geometrical content of (3.11) and (3.12).
The ordinary brackets mix this natural grading and thus do
not reflect the geometrical operations in a consistent way,
and it is for this reason that the graded products may be
considered superior to the ordinary products.

IV. THE FUNDAMENTAL THEOREM

The analysis of the structure of a versor reveals that the
Z, gradation (2.6) may be described as being completely
contracting. By this it is meant that the contraction property
(2.4b) is applied between all possible pairs of factors of the
versor remembering that noncontracting pairs must anti-
commute. This structure is conveniently given by the Pfaf-
fian, which is simply a subset of the expansion of the de-
terminant. Before defining the Pfaffian, it is necessary to
introduce certain well known sets to be used extensively in
what follows.

The sets consist of arrangements of labels which may be
taken to be subsets of the natural numbers N. We denote
ordered sequences of subsets of N by

Ni = (pp + 1,....9)
where

1<p<qeN.
We adopt the notation that Greek letters denote the reorder-
ings of the sequences and thus represent bijections of the
labels N7. The ith component of a particular arrangement p;
is the result of p acting on ieN7. Of course, the original order
of N? is important and is always taken to be the natural
order.

The first set, which contains the other sets to be defined,
is the permutation or symmetric set, S"(N? 1 7). This is the
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set of n! permutations of the » labels N2 ¥ {. Any particular
permutation €S "(N7 ) has sgn o () given by the parity of
the rearrangement

( 1,2,...,n )
T 15T aseesT

The remaining sets are defined as subsets of $” by plac-
ing ordering restrictions on the components of the bijections.
The normal ordered set, N*"(N3"), takes all members
pES?(N?") such that (i) for any keN7, p,, _ ; <p,, and (ii)
forany 2,keNj, h <k = p,, | <pyi_ - Foreach k in con-
dition (i) the number of members in the set is halved, while
condition (ii) selects only one of each ! ordering given by
S%. Hence the cardinality of the set is (2r)!/(27 ).

The partition set P, (N}) has members ueS"(NY),
such that g, <" <p,, By 1 < " <ppyg and p, 40
<+ <u,. For g =0 this reduces to the combination set,
C,(N7), which has n!/((n — p)!p!) members as a result of
the restrictions p,<p,<"r<p, and p, . <p,,,

<+ <u,. This, of course, corresponds to the combinator-
ics problem of partitioning » labels into two parts and satis-
fies C§(N}) = C(N]) = N{. The reason for formulating
this set in this way is simply to expose the parity assigned to
each member of these sets.

It may be noticed that the partition set P, (N}) can be
constructed as the composition of two combination sets, but
that this may be done in two ways. Thus we have the follow-
ing identity to be used later:

z a(#)fﬂll‘z”'#n

neP R

= 2

HeChNETD

o(u)

X Z ov)f, bt

v HFptga 1’ "Hn
veCh+ a(NE+ 9) [

= Y oW

peC (NI 1)

>

vEC;*"(N

LCON A, (4.1)

n
p+l)

"—

We can now return to the introduction of the Pfaffian. Be-
cause of their close association, we define both the Pfaffian
and the determinant using the above sets.

A Pfaffian is characterized as being the square root of
the determinant of an even-dimensional, antisymmetric ma-
trix. For matrix A having components a j» b JENT, its deter-
minant is denoted by |, | or, in terms of the diagonal compo-
nents, as |a,,d""a,,|. If this matrix has components
a; = — a;, I, JENY, then the Pfaffian of the upper diagonal
half of 4 has notation \a; |, or in terms of its upper compo-
nents, \ @ ;" d, _ .|, n =2r.

The determinant of rank » and Pfaffian of order r are
defined by Porteous® as

@11,8220580a | = Y 0(T) ] Wk, (4.2)
7S (N KeN
N@ip8y3sla 12,0 = 3 ) [] 9= ipyr (4:3)
peN(ND keN’
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The Pfaffian has many properties in common with the
determinant, the main one of interest here being the Pfaffian
cofactor expansion,'' which has identical form to the deter-
minant cofactor expansion. Before this well known result is
presented, an important mathematical object is introducted.
This is the Pfaffian containing components of the metric ten-
sor {2.4b). We define

T _ {\gi,iz & |ik|’ k even;
", k odd.
In terms of this object the Pfaffian cofactor expansion is

(44)

T = kZ . U(V)gi,ivk‘lTTiVJiv‘---ivk7l
veCy—2(N3)
= z U(V)gi,ivl Tiniv‘n-in_l

veCk— I (N5

k
=j;2 (= 1Y8:, Ty i
where again the circumflex denotes the omission of an index.
If we continue this expansion we find that 7, ..., con-
tains terms giving all possible ways of pairing the indices of
the tensor via the metric tensor. This is the property that
makes Pfaffians useful in statistical mechanics'? and it is
inherited from the normal ordered set which pairs off the
labels (p,;_,p2;) in all possible ways. It is also exactly
what is wanted in the structure of a versor, except that the
factors not contracted using the metric tensor must be anti-
symmetric and representable by polyvectors. The tensor
T,,....; may bereferred to as the contraction tensor and must
be applied to each even subset of the basis versor indices.
This is given in the following fundamental theorem connect-
ing Grassmann and Clifford algebras. '’
Theorem:
[r/2]

2,3, -a, = 2 Z
k=0 ueCs (N
>'<|a,‘2k+| A+ ANa,. ' (4.6)
Proof: 1t is only necessary to consider the versor basis so
that the proposition becomes e; e, ---e; = E,, ..., , where

LIS

4.5)

o(u)\a, a, R S

[r/2)

=3 3

k=0 peCi (N

oW,

e ."Zke[i”zk NRIEST
4.7)
The proof of this statement is by induction with the basis
being the r = 2 case. Using (2.14) we have
Ei.iz =€, T &, =€,€;,.
We proceed to the general case by decomposing E;; ..., into
terms with ¢, = 1 or u,, , , = 1 [this task has been simpli-
fied by our definition of the combination set C3, (N7)]:
[(r=1)/2]

Eiliz"'ir = Z z o’(#)]‘i)‘-iﬂz.“if‘zk
k=0 peCiir Y(N3)
X e[i"il‘zk + I'“"i“r— 1 ]
[r72]
+ 2 a(#)T""’#-”"}turl [fuaprsiuer 1 1

k=1 peCs ' (ND
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Note that for k =0 there is no Pfaffian part, and for &
= [r/2] there is no polyvector part if  is even. Hence the
changes to the limits of k. Also, there is no sign change in the
first term as given by an even parity rearrangement of (4.7).
Now we apply the Pfaffian cofactor expansion (4.5) to the
second term

T, - = Z a(:u)gi,i#v“__lT'i

) P .

" g iy g,
20 T2k -1 Vv Hvgp o
#eCa _2(NT" ™)

Exchanging the order of the combination sets in the sec-
ond term of (4.8) and using (4.1) withp=2k—2,9=1,
n=r—1,and m =1 gives

Z o(u) T‘i,im~ T

#eChirt ((ND)
peC5i ! (ND)

XI‘,'“," g

€r;,
R T L VP

o) >

o(v)g;,
Fo2kF 1 6\ —1 s
veC (N2i—y)

r—1

= 3 ow S (=g,

#eC o 2 (ND) i=2k-1

XT,;,

" an 2 P2k -1

- 3

weCii 12 (NG
where we have also used (3.15). Notice that for
k = [ (r + 1)/2] there s no polyvector part for » odd, while,
for reven, [ (r + 1)/2] = [r/2]. Hence there is no change if
we take the upper £ limit in the second term of (4.8) to be
[( + 1)/2]. Changing the step of this & value to bring it in
line with the other term in (4.8), and using (3.14) finally
gives the statement of the inductive step:

.;.l‘j' e,y ]

o(u) 711‘,“1"‘_'-“'

e. %e, . : R
[EYSP LI L 7SR TR |

((r—1)/2]
E, .= a(p)T,-“‘,-“:...,-m
k=0 pecii '(Np
e oe;; . e Ae.. .
x( h e['uzk+ b,y ] + i [ak o vrlne 1 ]

=€ oEiziJ- i, 1€ A Eizij...i,
=e; E, .

By the inductive argument, E;; ..., =¢;e; **-e;, and
thus we have proved the proposition. The statement of the
theorem follows from the multilinearity of the versor.

The Pfaffian in the versor expansion (4.6) carries a de-
terminant part which is a fundamental part of the property
of associativity. This structure is exposed in the following
theorem on the Clifford product of two polyvectors.

Theorem:

(a,Aa,A---Aa,)(byAbyA-- Ab,)

min{rs)

— (_l)k(Zr—k—l)/Z
k§=:0 z

ueC i (ND)

o(u)

>

veC{(ND)

o(v)(|a, b, ,a, b, .2, b, |

a A---Aa, Ab

Hr 41

A+ Ab,). (4.9)

Proof: Again, by multilinearity, we need only consider

Vi + 1
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the polyvector basis. The basis of (4.9) will be some subset of
the (r + s)-versor:

€.€.,"""¢;
{(r+s/2))
= o)T, ; ... e " .
(4.10)
]

(ﬁuﬂz#s»ﬂu--w/‘zk = U2kt + 10eolhe ¢ koobbr 4k 1ol g s
My 1Moty ase sl koMi  yseesfbpshy g kg1l s

This fixed permutation shuffles the elements of
C;F (N7 **) and does not violate the normal ordering rules
for the indices of the contraction tensor. The parity of this
arrangement is given by the number of exchanges involved in
moving indices g, , ; throughy;, VieN} and VjeN;_ ,. This
B(r—D+=)+ "+ =k =kr—}k(k+1).

It is now straightforward to form the basis polyvectors,

e, iy iy 2 ]? in (4.10), using the alternating
maps 7S (N} ) and peS *(N;1 { ), respectively. These maps
have no effect on the polyvector in (4.10), and so we concen-
trate on the normal ordered indices. The modified contrac-
tion tensor, 7; , ; , has labels that satisfy

iy i e
T Prep oy TPty Th Pl 4k

Ty, <Py, , because of the normal ordering condition. The
mappings 7 and p extend this inequality to
K <p,,;, VieN] and jeN;. Thus the Pfaffian (4.3), under
these conditions, reduces to the determinant (4.2) which
absorbs both alternating maps. The combination set
C 24 (N{**) now splits into separate combinations for the
label subsets Ni and N7 {. Relabeling the indices &£, , , by
v, and the polyvector labels i, , , by, finally gives the Clif-
ford product of the basis polyvectors:

€ ity 1€ ]

i) 1/72)k k—1
2r—k —
= 2 (_1)(/)(r ) 2 o(p)
k=0 peCL(ND
X vecszms) o(v)( Igi”ljvl e .giu:J'v;( |
k 1
Xe

Note that for k> min(r,s), one of the k metric tensors
must have both index labels from one antisymmetrized set
and all such terms are excluded. Thus the proof of the
theorem is complete.

This theorem on the structure of the polyvector product
is an explicit statement of the semigradation given by Hes-
tenes'’:

min(7,s)

() (r+s—2k)
RORSOC S RY+—,
k=0

The smallest polyvector part of this semigradation has va-
lence |r — 5| and has been called the generalized interior
product by Hestenes. For s> r this is
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To derive the structure of (4.9) we simply antisymme-
trize separately the first 7 and the last s vector factors of
(4.10), thus eliminating any components of T, that
represent contractions within the rank » and rank s polyvec-
tors of (4.9). For example, the first term of the cofactor
expansion will be annihilated for r greater than unity. Hence
itis convenient to rearrange the indices of (4.10) before anti-
symmetrizing. For this rearrangement we choose

)

'(a,/\"' Aa,)«(b;A---Ab,)

— ( - ])r(r—l)/z

X ¥ aWiah,,..ab, b, A--Ab,.
veC (N}
The commutation law for this
A (r).B = ( _ l)rS+min(r.s)B (S).A (&2
The largest polyvector or exterior part of the product
can be selected from (4.9) in the following way:

product is

|
Hs! Z a(#)(a‘h/\.../\a#’)

X (a A+Na, J)=aAAa, .

i1

This, of course, is a statement of the Laplace expansion of a
determinant, resulting from (2.5'), and emphasizes the fact
that we have assumed that the polyvector basis forms an
exterior algebra under the alternating mapping. When ex-
panded over an orthogonal basis, this statement becomes
almost trivial in the Clifford algebra, but this does not dimin-
ish the content of (4.9) for the definition of the basis poly-
vector (2.5) that did not assume the basis vectors were or-
thogonal. We also look at a part of (4.6); in particular, the
scalar part. Denoting the function that selects this grade by
sp( ) we see immediately that sp(e; e, *~-e,)=7T,,...,,
where T, ; .., , is defined by (4.4). Thus the properties of the
scalar part of an even-versor correspond to the properties of
the Pfaffian. This generalizes the properties of the trace op-
eration in the Dirac algebra'® to an arbitrary Clifford alge-
bra.

Salingaros'® has considered generating the Clifford al-
gebra using (4.6) and (4.9) as the definition of the Clifford
product. Unfortunately, his form of (4.9) contained an in-
correct sign factor, presumably because it was not derived
from the more fundamental (4.6). By the universality of the
Clifford algebra it is sufficient to verify properties (2.1)-
(2.5), for (4.6), to prove that it defines the Clifford product,
and this is the path followed by Salingaros. We can immedi-
ately see that, except for associativity, these properties are
easily satisfied. The contraction property (2.4) follows from
the use of the Pfaffian contraction tensor, while (2.5b) is
guaranteed by the construction of the versor over the poly-
vector basis.

But it is the property of associativity (2.2) that is most
revealing. This property is not trivial as suggested by Salin-
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garos, and thus the proof that (4.6) is a definition of the
Clifford algebra was not completed. Although it is not neces-
sary, we could go on to verify that (4.6) generates an associ-
ative product. Such a proof involves a Pfaffian expansion
analogous to the Laplace expansion of a determinant in
terms of complementary minors, given by Caianiello.'® It
involves Pfaffians and determinants of different orders and
ranks with the largest determinant part being displayed in
(4.9). To complicate matters further, the associativity of the
product of versors contains many Pfaffian expansions be-
cause of the Z,-graded structure. In the analogous case of
associativity for the exterior algebra, a similar expansion re-
lies upon only one determinant and so we are led directly to
the Laplace expansion. In the Clifford algebra the complex-
ity of the situation warrants a more detailed analysis via the
tensor representation. This is presented in a separate paper*
which deals mainly with the associativity of the Clifford al-
gebra.
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Clifford associativity and the Pfaffian expansion
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With the help of the Pfaffian, an operator on the tensor algebra which generates the explicit
coset structure of the Clifford quotient of the tensor algebra is defined. The associativity
property of this tensor representation of Clifford algebra leads to a Pfaffian expansion
analogous to the Laplace expansion of a determinant. Further, the explicit statement of the
algebra norm provides a proof for the Hadamard theorem.

1. INTRODUCTION

The connection between the Grassmann algebra and the
determinant is a fundamental result of the theory of exterior
forms. It is an elementary but powerful theorem since it ex-
poses the properties of the determinant from properties of
the Grassmann product. The property of interest here is that
of associativity, which leads directly to the Laplace expan-
sion of a determinant.

The Clifford algebra has not been as popular as the exte-
rior algebra in the mathematical literature, and yet it is an
ideal formalism for geometric operations. The Pfaffian also
has been overshadowed by the determinant and indeed was
originally perceived as a special determinant. In fact, this
situation can be reversed with the determinant being a spe-
cial case of the Pfaffian, and so arguments as to which one is
more fundamental are futile.

The properties of the Pfaffian are presented in a chrono-
logical survey of determinants by Muir.! The simplest is that
the Pfaffian is characterized as being the square root of an
antisymmetric determinant.” The connection between the
Grassmann and Clifford algebras has been studied by Che-
valley>* and Rasevskif® in a restricted form, using an ortho-
normal basis. More generally, the fundamental theorem giv-
ing the Pfaffian as the functional relation between the two
algebras is stated by Caianiello® and has been previously
proved by the author.” This result is necessary for a proof of
the uniqueness of the operator that generates the Clifford
algebra from the tensor algebra.

After introducing the Grassmann and Clifford algebras
on the tensor space, we prove that the property of associati-
vity of the Clifford algebra leads to an expansion of the Pfaf-
fian analogous to the Laplace expansion of a determinant in
terms of complementary minors. Because of the gradation of
the Clifford algebra over the tensor space, Clifford associati-
vity requires that an arbitrary Clifford element contain com-
binations of Pfaffian expansions for each grade, apart from
the lowest grade.

The following notation for certain subsets of the sym-
metric set S” will be adopted from Ref. 7. Members of these
sets will be denoted by Greek letters and will be considered
to be bijections of the natural number sequence Nj

= (1,2,...,r). Note that S (N5 *+7) denotes all permutations
of the labels p,p + 1,...,p + rCN. For u€S", u has sign o(u)
determined by the parity of u with action (i) = y,, ieNj].
The combination set C, CS " is defined by the ordering re-
striction v, <v, <+ <v, for veC and the partition set
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P, , may be defined with extra conditionv, , , < - <v, .,
for veP , , or as the composition of C, and C;~?(N; ).

The normal ordered set® is composed with the combina-
tion set to give the complete Pfaffian set with members p
€N ;,, CS’, which satisfy (i) for any keN7{, p,, _, <p,; and
(i) for any h,keNi, h <k =>p,,_ | <pax_,. The normal
ordered set N 27, or simply N*™, defines a Pfaffian, since the
set describes all possible ways of pairing the labels N2™. All
sets carry the parity defined in the symmetric set given by the
sign of o(p).

The determinant and the Pfaffian are now defined using
the above sets. For matrices with components a; and b,
= — b, I, jeN}, k,JeN?™, the determinant of rank n and
Pfaffian of order r are defined by Porteous® as

|@11@225 0@ | = z a(m) H i, s
mesS" keN{

\b12:b335 303, 12, = z o(p) H by~ 1ps

peNY keN{

1l. THE TENSOR AND EXTERIOR ALGEBRAS

The tensor algebra .7 (V) = @ V is a graded, associ-
ative, and infinite-dimensional algebra consisting of the mul-
tilinear forms over the vector space V. The grading of the
algebra is denoted by J(V)=®'V, so that
T (V) =277 (V). A multilinear form belonging to the
subspace 7 "(V) is said to have degree r and, if simple, is
denoted by

v, ,=0® " 80,EQF,
where

v,el, ieNi.
Note that if 7 = 0, then v€.7 °( V) =F, the field over which ¥
is developed, and .7'(¥) =V, so that the natural map
V-9 (V) is an embedding.

If the vector space V is a nondegenerate inner product

space with inner product denoted by { , ), then this extends
to an inner product for the algebra:

.....

i=1

r=wl®.“®wr' (1)

.....

This can be used to identify the dual algebra (@ V)*=@ V'*
= .7 (V*), where V *is the dual vector space of V. The dual
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vectors are denoted with an asterisk or by raising the suffix,
and their action on Vs given in terms of the inner product by
v*(w) = (v,w), Yv*c¥ * and weV. For V of finite dimension
n, and with signature p, g, n = p + ¢, we can construct an
orthonormal basis e,,...,e, with dual basis ¢',...,¢", such that
€(e;) = (e,e;)) =8, and e'(e;) = (e;e,) = — 8y, for i
nJjeN%, and keN’, .
|

S ()N (0, )0 W, ) W M0 s

ueCs,,

0,

Note that this Pfaffian is the square root of |b;|, where b;
= — b; = (v;,0;). For any combination C,,, the ordering
of the Pfaffian indices u, <y, " <p,, can always be
achieved by the properties of the Pfaffian' with symmetric
components and, in the Clifford algebra, the ordering of the
tensor indices determines the sign of o(x). Explicitly, the
sign term in (2) is o(u) = (—1)"""*" =D where ¢
= 2,?: 18-

Of course, the contraction operator of zero degree is
linear, so that it is a tensor of degree » — 2m, but it is not
simple. For example, the order-1 contraction in (2) gives

r—1 r

To, , =Y Y (=YW@, 5. 5. 4)
i=1j=T+1

where the indices denoted with a circumflex are omitted.
Fundamental to the structure of the tensor representation of
Clifford algebra is the grading of the contraction operator
presented in the following theorem. With an inductive argu-
ment using (4), we find that the Pfaffian operator produces
contractions between each pair of vectors, the number of
pairs being given by the order. Hence the operator
Com=3Xz_,I'™ is called the complete contraction opera-
tor.

Theorem 1:
r*r*=[(m+n)/mnl]C™*+"
Proof:

(™, )= Y o Y oW

ueCi,, veCs
XNV (W, )5t 2™ (W, )|
X \v““'(v,,v:),...,v“”"’"(v#m)l

Xv

H20m + ny + 1oy

= 3 o\, V" ()]

70 S

X\l)yz"'+l(l) ) v#um+n)—|(v )l
Ham 42707 Ha(m+ m)

Xv

B2o(m + n) + 10-esbte

— Z a(#)vﬂn(vﬂz)...vﬂum+n)-n

r
ueN 2mz2n

XA{v

Ha(m+m

v

H2(m + n) + 1ol r
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The action of the dual vectors becomes multiplication in
the Clifford algebra and is referred to as the contraction
property of the algebra. The construction of the Clifford
quotient algebra of the tensor algebra relies upon the defini-
tion of a graded operator I'* called the Pfaffian contraction
operator of order k and is defined by its action on tensor
forms as

2m<r, )

3)
2m>r.

r
where peNj, ., CS’ satisfies p,;_, <p,;, for N[ or
EEND LT, <P <" <Ham_15 800 Lo 4 | <Pomy3 <"

<Hym+ny—1- ToObtain ueN;,, , », werequire thatu,, ,

<My _,for ieNT' and jeN; 1 7. But from the properties of
the Pfaffian,' exchanging u,; _, and u,; _, is equivalent to
exchangingu,; and u,;, for ieNy*for jeN;, T 1. This is already
included in N3, , ., . Hence removing the restriction u,; _,

<My, in the normal ordered set N>™* ™, gives multiple
copies of N ™+ " corresponding to even parity reordering
of members of N 3(75+ . The factor of multiplication is given
by Cn* ", since we are partitioning the secondary ordered
indices into two parts. This completes the proof of the
theorem.

The contraction property is only one-half of the multi-
plication by a vector in the Clifford algebra. The remaining
part generates the exterior algebra and so a brief considera-
tion of the construction of the Grassmann cosets in the ten-
sor algebra will introduce another operator necessary for the
construction of the Clifford cosets. Both constructions are
analogous so that this approach will summarize the method
used in the Clifford algebra case.

The Grassmann or exterior algebra & ( V), consisting of
all antisymmetric tensor forms, is obtained from the tensor
algebra by taking the quotient of 7 ( ¥) with the ideal gener-
ated by the symmetric dyads, & (V)=.7 (V)/I, where
I={x®x|xeV}. This is a graded and associative algebra
which is finite dimensional for ¥V finite and, in such a case,
the tensor algebra must be filtered. The ideal may be re-
moved from the cosets x + I, Vxe& ( V), by antisymmetriz-
ing the graded tensor space using the alternation operator,
Alt. This is defined in terms of the antisymmetrization oper-
ator A* where A°1 =1, and whose action more generally for
a tensor form of degree ! is A%,

.....

[ i !
Vi1 =Av =Y [olhesvle, (3
i

[

where e;, ieNT, is a basis of V. This is called an /-form and
belongsto &' (V) =7 (V) /L. If the action of A’ on tensors
of degree not equal to / is taken to be annihilation, then we
can define the alternation operator to be Alt=X;> , A’. This
operator is a mapping from the tensor algebra to the tensor
representation of the exterior algebra. We now derive the
relation of the Pfaffian to the determinant using I'.
Lemma I:
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l]) = ( - 1)[1/2]Ivl(w]))"'lvl(wl)‘9

.....

where [x] is the integer part of x.
Proof: Using Theorem 1 and then (4) we have

i I
_____ll__I"I—l (E 2 (__ 1)j—i—l+lvi(wj)

i=1j=1

1

=r/! — e
(( ) Imi-n!

2 o(p)

nes'’
X Z U(V)vul(wvl )vp2 ..... s ® wv, ..... Vl) °
weS!

Continuing this reduction using (4) we arrive at the state-
ment of the lemma:

..........

= ( . 1)(1-1)+(l—2)+-~+1_l_‘ za(#)

l ! HES;

XY oy (w, v (w,,) v (w,)

ws!

=(—-DY"D2Y g(v)vt(w, ) (w,,) v (w,,)
veS'!

= ( — D' (w) W (wy),...,.0 (w,)].

It is a simple matter to prove associativity for the quo-
tient algebra 7 (V)/I with the statement being

...............

...............

this is a direct statement of the Laplace expansion of a deter-
minant in terms of complementary minors, as a result of (5).
The analogous statement for Clifford algebra involves the
grading over the exterior basis of many Pfaffian contractions
I, and so it is a statement of many Pfaffian expansions.

1. THE CLIFFORD ALGEBRA

Similar to the exterior algebra, the Clifford algebra is
defined as the quotient of the tensor algebra with an ideal. In
this case, we are dealing with an inner product vector space,
and we denote this space and the inner product, which we
assume to be nondegenerate, by V. Then the Clifford algebra
is defined as € (V)=7(V)/I(V), where the two-sided
ideal I(V) is generated by elements x®x — {(x,x),
Vxe7 (V). For a completely degenerate inner product, the
Clifford algebra reduces to the exterior algebra.

The ideal 7(V) is homogeneous of even degree in the
semigrading of the tensor algebra, and so ¢ (V) is not Z
graded, but Z, graded. However, the exterior subspace of the
tensor algebra is isomorphic (as a vector space, not as an
algebra) to the Clifford algebra®® under the mapping gener-
ated by the alternation operator Alt. In particular, thereis a
canonical form for tensor representations of Clifford ele-
ments, whereby the space is invariant under the action of
Alt. The canonical form is gained by applying the contrac-
tion operator Com, to any tensor representation of a Clifford
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element, thus producing tensors v, __,, such that for i, jeNj,
not equal, v'(v;) = 0. Hence the ideal I(V) reduces to the
exterior ideal /, which may then be annihilated using Alt.

Composing the contraction and alternating operators
produces an idempotent operator which gives a mapping
from the tensor space to the canonical tensor space isomor-
phic to the exterior space. We call this operator the Clifford
contraction operator, Con= Alt Com, and it only remains to
prove that this maps onto the exterior space and is unique to
show that it generates the Clifford algebra.

Lemma 2: The Clifford contraction operator, Con
= Alt Com, generates the Clifford algebra.

Proof: Denoting the canonical form of a tensor belong-

ingto € (V) by v,,__,,, called a versor, we expect

Lp
Con(v;, ) =Y Y o(p)\*(v,) 0 (v, ),

k=0 pyeChy

X(vﬂzk)lv[#zk+1 Hp] (6)

This explicit form of the exterior structure of a versor is
proved by induction in a separate paper’ and need not be
repeated here. It extends the Jordan relation, v, ,, + v,
= 2v'(v,), to the entire algebra and thus, by the universality
theorem®, the operator Con is the required generator.
The associativity of the Clifford algebra can now be stat-
ed as

This is the basis of the following theorem which presents the
Pfaffian analogy to the Laplace expansion of a determinant.
This theorem has been proved by combinatorial arguments
by Caianiello.!®

Theorem 2:

NO (0300, ™ (03|
min([r/2),[k — #/2]) ,
= Y (=D"Y ow

I'=o HeCs,,

x 3 o(v) \v* (1, ), N (Y, )|

veChi TN D
XAV (0, )0 (0, )|
X [, )t ()],

Van+1

where
m=([r/2]1-1"), n=(lk—r21-=-1").

Proof: More explicitly, associativity may be written as
((r+5)/2]

..........

k=0
[r/2]

= Con[ D AT ™, L)
m=0

[s/2]
o 5 AW, ). ™

o
The term in square brackets is multiplied by
Com = 2= ,I', so the total order of the contraction opera-
tor on the right-hand side is / + m + n. This can be equated
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to the order k operator on the other side by substituting
k =1+ m + n and replacing the summation over n by a
summation over k. The last factor then becomes 37"+, + (2]
X AS~Hk—m=Dbpk—m=Iry, ).Now theorder of the sum-
mations over m and k are interchanged:

[r/2} + (/21 +1 ¢q

[7/2}) m+ 1+ [s/2]
m=0 k=m+1 k=1 m=p
where

_ {O, for k<14 [s/2],
P=lk—1-1[s2],

otherwise; (8)
_ [k— I, fork<l+[r/2],
7= |{r/2], otherwise.

Also, nonzero terms in (7) require 2k < 7 + s so that we may
take the upper limits of both the k& and / summations to be
[(r + 5)/2]. Exchanging the order of these summations
gives a graded statement of the right-hand side of (7). Withp
and ¢ defined by (8), this is

[(r+s)72) ok
A2, L ew,

.....

k=0
[(r+572] &

=3 S Y DA TG, L))

2 2.2 Dl
8’(As—z(k—m—“I"“"“'(wl ..... s))]' ®)

For each k, this expresses many Pfaffian expansions as
coefficients in the exterior subspace &’*°~2¢(V)
=7 "*+*-¥(V)/I. Choosing the scalar part, with
2k = r + sin (9), produces a single Pfaffian on the left-hand
side. Equating the scalar terms gives

Fk(vx ..........

I=0m=p

®(As 2(k— m—I)I'«k m—l(w1 ..... ))]

Now, asaresultof (3), ['[A"~>"T™(v,,_,) ® Wy, ]
=0 for [> min(r,s) or I+ 2m>r and
Fl[v[l ..... r1®(A2u+M)_Tk_l "w,,. )] = for

I4+2(k—=1—p)>s or I4+2m <r Hence, for nonzero
terms in (9), we require /<min(7,s) and 2m = r — /. Denot-
ing equivalence modulo 2 by ~, we have r~s~/, which
gives the following relations:

it b el
"='J{s=[7]+[7]+"2[7]-

Using these expressions in (8), it is easy to check that
p<(r—1)/2<q, so that it is always possible to choose
m = (r —1)/2, VI~ r. Hence changing the summation over
I and substituting m = (r — 1) /2 gives

min(7,s)
PI(AIF(r— I)/Z(vl
l=r—2[r/2]
step 2

...............

@Alrk—l—((r—l)/2)(wl ))
,,,,, s/t

Changing the summation variable / =/’ + r — 2{r/2]
tol’ = [1/2] by changing the summation step and substitut-
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ingm = [r/2] — I'and n = [k — r/2] — I’ finally gives the
statement of the Pfaffian expansion:

..... r W,
min([r/2], [k —r/2])
- 3 TAT"(v, ,
I'=0
min([7/2],[k — r/2})

.....

..........

where we have removed the combinatorial parts of I'"” and
I'" contained in definition (2). Applying this definition
again and using Lemma 2 produces the ﬁnal form of the
Pfaffian expansion. Withw, .=v, .

ment of the theorem, thus completmg the proof.

Theorem 2 is a partitioning of the Pfaffian of order &k
giving an action on the first 7 indices and a separate action on
the remaining 2k — r indices of the Pfaffian. These factors
describe pairs of contractions whereby m pairs connect in-
remaining / pairs connect an index from each side of the
partition. This theorem results in an explicit statement of the
norm of a versor.

The norm of the Clifford algebra is defined in terms of
the reversion involution U which is an antiautomorphism of

,,,,, 5.1y - Denoting the projec-
tion of v on the polyvector subspace of valence s by v'?,
reversion involves s(s — 1)/2 exchanges of the s vector fac-
tors, equivalent modulo 2 to the integer of s/2: P9
— ( _ 1)[:/2]v(:)-

The inner product for the tensor algebra (1) is

Ui pVt,e) = Y, o) 3 o) I (uavy)

pes” veS’ N}

= |u‘(v,),---,u'(v )|

=L, 0,0 (10)

where Lemma 2 has been used.

Defining the Clifford algebra norm ||v|| = (v,v) and
using linearity, the inner product polarizes to
(u,v) = ((ubd + vit)/2,1) = (ud,1). For versors, this re-
duces to the algebraic expression ||| = uiz. The norm for a
polyvector is given by (10) as the square of the volume of the
parallelepiped described by its vector factors. The maximum
value for this volume squared corresponds to the norm of the
versor formed from these vectors

eN§

The versor expansion (6) provides, in the following
theorem,” an explicit relation between the norms of these
two elements.

Hadamard Theorem'

loer,...0ll = 2 |Cretes ;2: ;‘)

where v(§ 72 = AP~ 2*T*p, _ is the projection of v, _, on
the polyvector subspaces of valence p — 2k.

Proof:
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o, l = V01,0 Dt

p/2] [pr2]
> 2 o) Y oI\,
k=0 1=0 pecy, veC¥,

For a scalar result we must choose k = /, and hence

”v(l, P ” = 2 ” z 0'(/1)\0“( ),--,U”z"_‘(v

=0 ueCs,

Z v =051l -

Exchanging the polyvector normin (11) withvj,
Versor norm as

e, | = N0 (0,0 (0,07 (). (v,)]
since
D2V

\V ()5 “t) | =(-

from the work of Caianiello.!?

Uyg
v (0, YNV (0, ) s

D20 (1), 7 (0,) 07 (0, _ 1 )y

v"ztw l(l)

Hax ) | .v[/"lk-f 1:---»“,,]”

otiy 1 mrvp] = W70y )58 ?(0,, )|, Theorem 2 identifies the analogous

,vz(vl)l >

Hence the Hadamard theorem is a special case of the Pfaffian partition expansion corresponding to a matrix which is
antisymmetric about the usual diagonal and symmetric about the cross diagonal.

Finally, it is worthwhile giving an example of the Pfaffian expansion. Of course, partitioning just one index leads to the
Pfaffian cofactor expansion. Partitioning the order-3 Pfaffian into halves gives the following “matrix” expansion:

ap, G5 Gy 45 Gy

a3y Q35 Q36| = Z o(u) z
Gy ay pHeC3 (N} weCHND)
Ase
- Y o Y
ueCH(NH veC3(N)

o(v)la

O'(V) \aﬂlﬂz l ) \aV|V2 | ) |al‘}"3 |

®vy /-"V7 al‘.\".‘

13045036 — Q12046835 + @12056034 a4 45 4y
= — Q3045026 + Q1304625 — A (3056024 — | Q24 Gps Q6| °
+ @238,45016 — A230468 15 + G230560 14 azy a3s Gy
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Analytical and algebraic approaches
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Minimal biorthogonal systems of the Clebsch—-Gordan (Wigner) coefficients of SU(3) DU(2)
are discussed as well as the dual coupled bases. The closed system of analytical expressions for
the dual isofactors (reduced Wigner coefficients) and the overlaps of coupled states is obtained
with the help of analytical inversion symmetry. The Regge-type symmetry of the overlaps and
the boundary orthonormal isofactors (orthogonalization coefficients) is discovered. The
polynomial structure of the alternative complete algebraic systems of the orthonormal SU(3)
isofactors (characterized by the null spaces, symmetries, and additional selection rules and
obtained by means of the Hecht or Gram-Schmidt process) is considered. The realizations of
the external “missing label” operators of the third and the fourth orders in the minimal
coupled bases, which lead to preferable algorithms to evaluate the orthonormal SU(3)
coupling coefficients satisfying different symmetry properties, are presented. With the help of
the 6j coefficients of SU(2) or inverted truncated SU(2) recoupling matrices, the biorthogonal

systems associated with the SU(3) canonical tensor operators are expanded in terms of

minimal ones.

I. INTRODUCTION

The missing label problem for SU(3) XSU(3) DSU(3)
and the theory of the non-multiplicity-free Clebsch—Gordan
(Wigner) coefficients of SU(3) DU(2) have a long history
beginning immediately after the first applications of those
coefficients in the nuclear and particle physics. Three main
directions of this theory are known that are grounded (i) on
the construction of complete nonorthonormal systems, (ii)
on the use of the SU(3) invariant classifying operators, or
(ii1) on the canonical unit tensor operators, respectively.

The purpose of this paper is to discuss from a uniform
viewpoint different solutions of the SU (3) outer multiplicity
problem, which allow one finally to obtain the numerical
algorithms and analytical or algebraic expressions for the
coupling coefficients of SU(3) in the most convenient forms.

General analytical expressions for nonorthogonal
Clebsch-Gordan (CG) coefficients of SU(3) have been
constructed by means of different methods, including the
recursive-recoupling techniques,'™ the use of different gen-
erating invariants,”~® the projection operators,'®'* or the in-
tegration over the group.'

The most convenient expressions for corresponding
nonorthogonal isofactors (reduced Clebsch—-Gordan—
Wigner coefficients) of SU(3) DU(2) [with the minimal
number of sums (six), some of them being included in the
standard multiplicity-free functions of the SU(2)- or
SU(3)-Wigner-Racah calculus] form the analytical bior-
thogonal systems.>'> The use of the biorthogonal systems
allows one to simplify considerably many operations of the
Wigner—Racah algebra. The usage of the biorthogonal sys-
tems is particularly preferable from the computational point
of view in all the cases when the summation over the multi-
plicity labels of the irreducible representations (irreps)
takes place.

2351 J. Math. Phys. 29 (11), November 1988

0022-2488/88/112351-16$02.50

General properties of the biorthogonal systems of non-
canonical bases and coupling coefficients are discussed in
Refs. 16 and 17. As a rule, the biorthogonal system is formed
by dual isofactors represented by specific bilinear combina-
tions®!® of the orthonormal isofactors (i.e., by special matrix
elements of the projection operators'®'?) and by analytical
solutions of some discrete boundary value problems®'é'8
(i.e., by the explicit integrals of the recursion formulas'?).
Due to the one-to-one correspondence between the param-
eters of the biorthogonal systems of the isofactors (or, re-
spectively, of the coupled states) and the Weyl (and
Littlewood-Richardson) direct product decomposition
rules, the labeling of the minimal analytical biorthogonal
systems of the SU(3) isofactors® presents alternatives to the
canonical labeling scheme introduced by Biedenharn,
Louck, and collaborators.2?! Particularly, the Gram-
Schmidt producers applied to the minimal biorthogonal sys-
tems lead in a simple way to the orthogonal system of isofac-
tors introduced long ago by Hecht'® (see also Refs. 5 and
14), some properties of which have been discussed recently
by Le Blanc and Rowe.?? The results of Refs. 5, 6, and 15
necessary for our investigation (the review of which is given
in Sec. II of our paper) allowed us to reveal the additional
symmetry properties of the introduced paracanonical ortho-
normal isofactors that reduce the supposed arbitrariness of
the chosen labeling scheme considerably. Thus in Sec. II,
some important universal constructive elements for the
SU(3) Wigner-Racah calculus are presented.

The closed final form of the minimal biorthogonal sys-
tems is achieved in Sec. III, where the analytical inversion
symmetry'”?* of the biorthogonal systems allowed us to ob-
tain new expressions for isofactors and overlaps of the non-
orthogonal coupled states. In Sec. IV, in a rather simple way,
the polynomial and other properties of the paracanonical
isofactors are established that have some analogy with and
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differ from the properties of the canonical SU(3) tensor op-
erators.?! In general, the paracanonical SU(3) operators as
the basis for the Wigner—Racah algebra may be found with
less effort than the canonical ones. The null-space proper-
ties,?? symmetries, and the additional selection rules of the
isofactors are different as well as the reduction formulas
(more exactly, the Regge-type symmetries of the boundary
isofactors) and the structures of the denominator functions
(cf. Ref. 21). The alternative pseudocanonical systems of
orthonormal isofactors that imitate the null-space structure
of the canonical tensor operators are also discussed in Sec.
Iv.

The minimal biorthogonal systems are also very impor-
tant for calculating the uniquely labeled orthonormal isofac-
tors of SU(3) in the case of other splitting schemes. The
usage of classifying operators may be preferable from the
physical point of view. The external labeling operator of the
third order for SU(3) has been proposed by Hecht.'® [The
proof of equivalence of this operator with that proposed by
Moshinsky* acting in the complementary group U(4)
DU(2) X U(2) space is not trivial. ] The realizations of this
operator in different nonminimal coupled bases has been
proposed in Refs. 4, 8, 12, 13, 18, 25, and 26. Particularly in
Refs. 12, 13, 18, and 26, some auxiliary coupled bases of
SU(3), in fact, have been expanded in terms of the minimal
ones.”’

AliSauskas and Kulish®® have demonstrated that the ex-
ternal labeling operator of the fourth order, suggested by
Sharp,? is also indispensable for the spectral resolution of
the SU(3)-invariant solutions of the Yang-Baxter equation.
They found the matrix elements of both external labeling
operators in the minimal coupled bases.

The symmetry properties of the isofactors labeled by the
proper values of the classifying operator of the fourth order
better satisfy the pattern of Derome® than the case of the
operator of the third order.'*'*'® The minimal algorithms of
evaluation of the boundary values of isofactors for both clas-
sification schemes are given in Sec. V of this paper, as well as
the representation of the SU(3) XSU(3) DSU(3) genera-
tors and some tensor operators. Particularly for low multi-
plicities, the expressions in the algebraic-polynomial form
are possible.

In spite of the considerable aesthetic fascination, the
problems remain in the general explicit algebraic construc-
tion of the canonical SU(3) tensor operators.?%2!-3!-33 The
recursive-numerical algorithm for the SU(3) isofactors cor-
responding to this external classification scheme has been
given in Ref. 34, while in Ref. 21 the generating function
technique is used for the algebraic construction. There was a
rather strange situation concerning the absence of connec-
tion between the SU(3) canonical tensors and the analytical
systems of SU(3) isofactors.

In Sec. VI of this paper, a biorthogonal system is intro-
duced associated with canonical SU(3) tensor operators,
which is expanded in terms of the minimal biorthogonal sys-
tem. This expansion corresponds to the Weyl transforma-
tion between different SU(2) subgroups in SU(3). The ca-
nonical splitting of the multiplicity similarly to the
paracanonical one is specified precisely by the proper se-
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quence of the Schmidt process, which may be performed
explicitly because for any fixed SU(3) tensor operator the
overlaps of the initially nonorthogonal coupled states take
algebraic-polynomial form. The algebraic-polynomial struc-
ture of the explicit expressions for orthonormal isofactors
[i.e., the Biedenharn-Louck canonical U(3): U(2) projec-
tive operators] is also ensured.

In this paper, the problem of polynomial representation
of analytical expressions for isofactors and overlaps
(norms) is emphasized, taking into account both the possi-
bility of the algebraic computer based calculations®® and the
problems that appear in the case of large values of some
parameters. Analytical expressions usually are represented
as factorial sums. For fixed values of all summation intervals
[the Regge-Bargmann-Shelepin (RBS) parameters of the
type (a)'’] they turn into elementary algebraic-polynomial
functions of the remaining (free) parameters or, in particu-
lar, are summed up. Contrary to the SU(2) case for which all
the Regge or Bargmann-Shelepin parameters of the
Clebsch-Gordan or Racah coefficients may belong to the
type (a) (see Ref. 36, Secs. 13 and 29), there are no univer-
sal, in this respect, expansions for general isofactors of
SU(3). Otherwise, the alternative approaches allow us to
find solutions most convenient for concrete aims. For exam-
ple, different expressions of Ref. 37 (see also Ref. 16) ex-
haust all the possibilities to choose the sets of the RBS pa-
rameters of the type (a) in the case of the multiplicity-free
SU(n) isofactors for coupling A X p (where 4 is an arbitrary
irrep and p is a symmetric one).*®

The unitary irreps of SU(3) will be denoted below as
mixed tensor irreps (ab), where a = m,; — m,;, b= m,,
— my;, and [m,;m,3m;;] is the Young scheme. The group
generators E,, (p,0 = 1,2,3) satisfy the usual commutation
relations,

[EoorEpo ) =0,0Epy — 8,0 B, (L.1)
The basis states are labeled by the hypercharge y = m,,
+ myy —3(my3 4+ my; + my;3), the isospin  i=Ll(m,
— my,), and its projection i, = m,, — {(m,, + my,), where
the integers m; form the Gelfand-Tzetlin pattern. Fre-
quently the parameter

z={(b—a) —Ly=my —{(m, + my,) (1.2)
is more convenient than y because the linear combinations

i+ 2z, (1.3a)

are non-negative integers. In the case of the coupling
(@'b'yX(a"b") to (ab)

a+z—1i, b—z—i

z=z'4z"4v, (1.3b)
where
v=4{a —-b'"+a"—b" —a+b) (1.3¢)

is an integer. The parameters of the highest weight state
(HWS) take the values

Yo=14(a+2b), iy=la= —z, (1.4a)
while for the lowest weight state (LWS)
o= —1{a+b), iy=4ib=2, (1.4b)
and for the maximal isospin state (MIS)
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Ym=4a—=b), i,=4a+d), z,=}ib—a).
The conditions of the biorthogonality of isofactors

S AW AP A WA B 1)y = 6,0

(1.4c)

g (1.5a)
; (/l :#li ”ﬂ””iﬂ)p(i "l_l'i ”,L_l”“/lﬂ)p . 5#1316”"&."’
’ (1.5b)

where A = (ab) and p = yi generalizes usual conditions of
the orthogonality and completeness of the orthonormal iso-
factors.

Ii. MINIMAL BIORTHOGONAL SYSTEMS AND THE
PARACANONICAL SPLITTING

Complete sets of the SU(3) coupled basis states may be
chosen among the vectors
PED . |a'b'y' i) |a"b "y"i"i))

yiigyii,

= ((Li"i7}i,) T (@'b'y'ia"b"y"i"||abyip)
P

X Y (@b'yia"b"y"i"||abyip) (iii"i}ii,)

X |a@'b'y'i'i,)|a"b"y"i"i} ), .1
where the left-hand side general projection operator of
SU(3) acts on the direct product state, and the right-hand
side CG coefficients of SU(2) and the bilinear combination
of the SU(3) isofactors are used as coupling coefficients.
(Here p is a multiplicity label of arbitrary orthogonal cou-
pled states.) It is convenient to denote the states, coupled
with the help of bilinear combinations, as projected ones.

A complete and most convenient basis for evaluation of

matrix elements of the labeling operators is formed by the
vectors

ln_ . 1) =|(a'b")(a"b")abyii,) _ . ;

= P;ZZ}JFZ]G% '>st ]a"b ")st, (2.2)
with the extremal parameters i' = i; —ip, y'~ )5, i" = —if
—ig, y" —¥5, and subscript > B, where

B=}i(a+b—-b"—a" +|v)), 2.3)

for the linearly independent states. Similarly the coupled
bases |7, ;- , ) or |5 _ ;- _ ) with the extremal parameters
V= —i—ig, ¥'=§5, 1= — i, =iy y=Pp or I =1 =i,
y -y, i=1, -1, y—y, may be introduced as well as the
bases |7y, 4 )s W5, _ ),and |, _ ;) (thesigns +, —
in the subscripts are correlated with the signs of the chosen
extremal values of the parameters z',2”,z in the correspond-
ing position). The multiplicity labels (“intrinsic isospins”)
are in one-to-one correspondence with the Weyl rules for the
decomposition of the direct product of irreps, similarly to
the Gelfand-Weyl-Biedenharn pattern.’?! The bilinear
combinations of isofactors for coupling to the states
|7_ . ) will be discussed later.

The basis dual with respect to | _ , ;) (for I>B) may
be constructed as follows:
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|1]"+’7) =|(a'b’')(a"b")abyii,) — +1
= (537 — T \IE,) ™!

X Z (alblyllwanb "y”l'"||abyi)_'+'7

X3 PEi|i,) by a"h Ty ).
[

(2.4)

The nonorthonormal isofactors in Eq. (2.4) satisfy the stan-
dard boundary condition®

(@'b'yyia"b "yyig||labyi) ~ T =8y, (2.5)
for i>B. Similarly the bases |7+ ), |5 ~'" ), etc., may
be defined. The constructive elements of all those bases (the
isofactors and overlaps) are mutually related by the symme-
try relations of the SU(3) isofactors and CG coefficients of
SU(2). It may be shown that the nonorthonormal coupled
states introduced by Quesne®® are equivalent (up to normali-
zation) to our states |p =" ") or " T ).

The corresponding solutions of the discrete boundary
value problem may be used in the following modifications of
the Wigner—Eckart theorem:

(abyii, |T 2.0 a'b y'i'i})
=Y {abyi| T2 a'b yyiy)
<

X (alb lyll-ranb ”y”i””abyl-) I, - (i’i;l”l;’lliz)
(2.6a)

=3 (@b T3 lla'b p5is)

X (arb ry:l.lanb "y”l"'”abyi) —_— ,7(1-/’-;1.”1.;, ll.l.z ),
(2.6b)
where in the right-hand sides special SU(2)-reduced matrix
elements of the SU(3) tensor operator T(a”b ") appear.

The dual external multiplicity labels appear quite natu-
rally in the usual relation'®

Z U(A A AA3A 13423 )1 2s (At Apatins||Ap)” >

P1.23

= Y (Apdrpall A 12) (A prioAas||Ap)

Hasthzshd 2

X (Ag A3\ Agattns) Uty ppsipins phoy) - (2.7)

between isofactors and recoupling coefficients U of the
group and its subgroup. For simplicity only a single coupling
chosen here is non-multiplicity-free. After choosing extre-
mal values of 4 ,,u4,5,4¢ according to one of the above enumer-
ated patterns, only a single (nonorthogonal) recoupling co-
efficient with the fixed subscript p,,; remains in the
left-hand side when the general case of the right-hand side of
Eq. (2.7) (with arbitrary g ,u,,,1) may be expanded in
terms of its corresponding boundary values.

Otherwise, Eq. (2.7) allows us to fix different nonor-
thonormal systems of SU(3) isofactors. For

Ay=1(a'd"), A,y=(a"b"), A= (ab), A,=(b"0),
A;=(a"+b"0), A,=QIa@ +b")+b' 1)
(2.8)
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the recoupling coefficients of SU(3) in the left-hand side of
Eq. (2.7) are multiples of special isofactors of
SU(3) DU(2).'%%* There is one-to-one correspondence of
A,, with the Littlewood—Richardson rules for the decompo-
sition (ba) X (a"b ") to (b'a’). In this way Eq. (2.7) allows
us to express bilinear combinations of isofactors necessary
for constructing states (2.2) in terms of the multiplicity-free
isofactors.>®

For
=(a'b"), Ap=(a"b"), A=(ab), A,=(0b"),
Ay=(a"0), A,=Q2I'\(a—a")+b-1T), (2.9)
and
a+2b—a —2b'—a" +b">0, (2.10a)

the relation (2.7) gives the solution® of the boundary value
problem, which is needed for constructing the coupled states
1177" ~> 7} [in this case the recoupling coefficient in the left-
hand side of Eq. (2.7) is reduced to a simple factor that does
not vanish for only the single value of A, correlated with the
multiplicity label ]. Similarly, the set (2.9) with 4,, replaced

J

(@'b'¥5i3a”b 555 labh '~

— ( _ 1);'+(a‘—b")/2+27‘

by (2Li(@' —b") +b' —1) leads to the isofactors asso-
ciated with the states |~ ') in the region

a+2b'+a”"—b" —a—2b>0. (2.10b)

Thus general nonorthonormal SU(3) isofactors of the
dual types may be expressed in terms of the SU(2) Racah
coefficients and the multiplicity-free SU(3) isofactors. The
minimum of the sum (6) has been achieved as a result of the
proper choice of the expressions for auxiliary isofactors'®-’
and is caused by the construction asymmetry. The different
choice of 4,,4;,4,, in Eq. (2.7) leads to alternative (more
complicated ) expressions for the nonorthonormal isofactors
of SU(3). For example, relation (2.7) with

Ay=((a —a) +a" —v—1"21"),
Ay =(0a" —b'+b—v),
A= 1(a,b'—a" +v),
solves the boundary value problem associated with the cou-
pled states |7 ~"'" ) and equivalent to construction of the

SU(3) coupled states proposed by Quesne.>®

The expansion coefficients represented as boundary val-
ues of isofactors

(2.9)

V(a" Ja, I YH(a'b'T'?)
+T' +36' —b+0)Ib—b'—

V(b " ia',i)H(abiz) ( QI'+ 1) (a+

DbNa +b' + Dla"V(T’ —2')!(?+z)!)v2
b"bWa+ b+ DT + 3N —3)!

v)(?'+ (b—b'—v)/2-7)

Bo—b"—v) —i+I'NYb—b'—v) +i+1"+

[Z=4(b"—a) +v, Z=}a"—a)—v] (2.11)

1

allow us to join both regions (2.10a) and (2.10b). They also allow us to expand the isofactors with superscript I''—,—in

terms of the isofactors with superscript —
subscript I', — , — . Here and below the quasipowers

AP =4A—-1)A=-2)A—x+1)=(4—
and other notations

H(abiz) = [(a+z—DWa+z+i+ DIb—z—DNb—z+i+ 1))
V(abe) =[(a+b—c)a—=b+c)a+b+c+ DV/(b+c—a)l'?

(abiz) = [(a+2—l:)!(a+z+l:+ 1)!(1:+Z)!]'/2
b—z—DUb—z+i+ DIi—2)!
are used.

, + ,i, as well as the isofactors with subscript —

x)(—l)(x)

, + ,iin terms of the isofactors with

(2.12)

(2.13)
(2.14)

(2.15)

It is remarkable that Eq. (2.11) [obtained in region (2.10a) immediately from Eqgs. (2.7) and (2.9) and in the region

(2.10b) after inverting the corresponding triangular matrix®] accepts unified analytical form. In the region (2.10a) the
allowed values of the multiplicity label 7’ are completely determined by the properties of discrete functions (2.13) and (2.14)
in Eq. (2.11), as well as the values of Tin the region (2.10b). So the bases |73, _ _ ) and |7_, , ;) are never overcomplete at
the same time. The extremal values of I (or T) may be found from the trlangular and betweenness conditions (including three

inequalities for the maximum an_d six f:or the minimum).
The lengths of intervals for I and I’ form the pattern

b'—a"+a+v a—-b"+b—v b—v b b’ b'+v
lg;| = a a+v a—da+b"+v a"—b'+b—v a —v a” ,
a—v a b” b" +v b'+b"—b+v a+a"—a—v

where ming; + 1 gives the external multiplicity® of (ab) in
(a'b’) X (a”"b"). As demonstrated below, symmetries of the
overlaps and boundary paracanonical isofactors (orthogonali-
zation coefficients) may be described by some of the
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(2.16)

r

72 = 6X6X2 transformations of pattern (2.16) which in-
clude the row permutations, the permutations of the couples of
columns (12,34,56), and the permutation of the even and odd
columns (with the change of the sign of v in the last case).
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The triangular nature of the transformations with the help
of Eq. (2.11) or with the related matrices allows us to fix the
following correspondence:

isi(b—b —v)+T'>4@a—a" +v) +1"=1  (217)

between the states of the biorthogonal systems with the labels
—,+,5I',—,—;and +,I", +. The proper sequence of the
Schmidt proms begmnmg with the highest values of the , 7', or
1" for the coupled states with subscript and with the lowest
values for the states with superscript reduces completely (up to
the phase convention) the arbitrarity of the orthonormal cou-
pled states obtained. The new splitting, which may be called
paracanonical, leaves only two versions of the orthogonal cou-
pled bases [two systems of the paracanonical SU(3) unit ten-
sor operators or isofactors, respectively] instead of 12 original
types of nonorthogonal bases (or systems of isofactors).

For the first version of the paracanonical splitting the or-
thogonal isofactors vanish unless

i—iig+2 +ig —2",

P4 4b—b' —v) —i<iy +2" +ig+2, (2.18)

m_ +)=>Raln_ .1
7

= 2 (iyisdy — )i, (yisiy —Tg\1T,)

d—iNG+iNT =D +2)!

—l(alb Iyl

= & I _ _ -
2{ "+((i—i NI + )G — 21T + 2)!

(= 1)~57 + B)!

" +i@a—a" +v) —iKip—z+iy — 7.
This property may be proved with the help of Eq. (2.22). The
restriction of the boundary isofactors proposed by Hecht'? (see
also Refs. 5, 14, and 22) is generalized here for arbitrary values
of parameters.

Thus the paracanonical classification is invariant with re-
spect to the cyclic permutations of the parameters

[

ba — yi—a'b'y'i' —=a"b"y"i" - ba — yi 217"
in isofactors along with the relabeling (2.17).

Let us postpone the analysis of the paracanonical splitting
and return to construction of the nonorthogonal coupled

states. In the complementary region
2" +b" —a' +b'—2a-—-b<0,
a+2b'+a"—-b" —a—2b<0,
the nonvanishing values of the isofactors of the type (2.5) also
appear for i < B. They may be found with the help of Eq. (2.11)

and the inverse transformation. In this case the states |7 _ | ;)

with i < B are linearly dependent and may be expanded as fol-
lowsls 17, 28

(2.10¢")

(I—l)(1+t+1)(1 B)I(i+ B)!(B—i—1)!

(2.19a)
a"b"yyig)labpiy ~ i _ L 1) (2.19b)
1/2 signv . . . .
) [(2T+ 1)(2i + 1)1Y*H(abi2)H ~'(abl 2)
] lm_, 4+ (2.19¢)

Recursive constructions (2.7)-(2.9) allowed us also to express the normalization coefficients and overlaps of the nonor-
thogonal states in terms of certain bilinear combinations of the recoupling coefficients.

The corresponding recoupling coefficients for the states |7 _ _ ;) coincide with the complementary resubducing coefficients
of the chains U(n) DU(n — 2) + U(2) and U(n) DU(n — 1) DU(n — 2) and may be found>** with the help of the Lowdin-
Shapiro projection operators of the subgroup SU(2)**#* (which transform the last two components of weight). In this way one gets

the following expression for the overlaps-

(m_ o 3lm_, o 3) = Gyiniy — i3I8, (g iy iy —

=B L am- . 3)

((21+ DI+ DT —ipiJ -7,

T+ iNJT+7)!

172 1
) [(abI 3)T (abJ %)

(@a+1)(b+1)(a+b+2)aa" b " (a" +b" + 1)!

(b'+b"—b+0)(b' +b" v+ Dli@a+b +b"+v+2)!

1)+ +%(2j 4+ 1) (2z — 25)'T(abjz)

X3 —=

& (@ —2+4+224+ D)V2(z—3L))V3(z—3J,))

(b +b"Fvo—z—-HUb" +b"

Vib"+v—iy —

Here

(-, 1lm_, v 3) =2 (@b'yica
P

+v—z+j4+ 1)
2,1, »J)

"b "3;7; labglp) (a'b v isa” b "Fi |labiTp).

(2.20)

(2.20')

The substitution group technique applied to special recoupling coefficients® allow us to find the overlaps of the dual
states.'>!%5 Both classes of overlaps were generalized for SU(n).>'®
Equations (2) and (6) of Ref. 15 or Egs. (4.4) and (4.7) of Ref. 18 (Ref. 46) along with the symmetry relations
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. ] 1/2 ” " , ;
(((22;””:*_1;)(?27:‘: 11))) {atblyrila :r ” ”"abyl) ( _ l)l—lo+(}’o—)’)/2(a:b 'ba—yl”b” " » Il)— I —
(2.21a)

=(— l)i"ni-.?g+7+(y6-y')/2(b,a, zabyt{{a"b" "y +.1 +
(2.21b)
give another solution of the boundary value problem. Its explicit form
((@'b'yia"b"y"i"|labyi)) =+
= (—DTFIFEITEINS I+ D+ DB 22"+ D]+ D)
<y (=D¥Qr+DQF +1)(b" =2 +5—r)I(b’ —z’+s«tr’+ DT (a,b,riy +2' +v—>5)
S [ONB" — 22" = 20NV (s )V (i + 2 — 5,57 )V — 2" — 8,ir)V (i) + 2 — s,i,r)

#”

- roi -z —s
r o r iy
X [~ ] ror s , (2.22)

. . . ]
1 ) p +2z -5 -in " e "

with the 6j and stretched 97 coefficients of SU(2) [including single and double sums, see Egs. (29.1) and (32.13) of Ref. 36] on the
right-hand side gives an expression for the nonorthonormal SU(3) isofactors with the exception of region (2.10¢). Here and in Sec.
III,

- ’ ’ ’ 12”1 » " ] 172
N =r(abiz)r(abiz)r'(a'b'z'z')( bWa' +b'+ Dla"™a” +5" + D! ) . (223)
(b”—22”)!(3"+Z"—l‘)!(a"+2”+l”+1)!

In region (2.10¢), Eq. (2.22) gives only the expansion coefficients of the arbitrary isofactors
(a'b'y'i'a"b"y"i"||abyip) = Z ((a'b'y'i'a"b"y"i" |abyi))~ *(a'b v iya"b "Vl ||labyizp) (2.24)
in terms of their boundary values in ‘the region wider than the multiplicity of the irreps. In this last case the additional expansion
(@'b'yta"b"y"i"||abyi) ~ 1 = z (@b'yyisa”b "ygig|\abpi) ~ 1 ((a'b'y'i'a"b"y"i" ||abyi)) (2.25)

with the coefficient used in Eq. (2.19) is necessary. Otherwise, Eq. (2.22) may be used for the expansion of the SU(3) direct
product states [coupled with the help of the SU(2) CG coefficients] in terms of the SU(3) coupled basis (2.2) which may be
overcomplete.

It is remarkable that in the case of the overcomplete basis two alternatives may be chosen for summation intervals in formulas
of the type (2.6) or (2.7): one can limit oneself by the linearly independent states or the sum may be taken in a wider region omitting
the additional expansion used in Eq. (2.19) and substituting the isofactors in the right-hand side by the pseudoisofactors, i.e., by the
expansion coefficients of the type (2.22). Such “painless” *’ expansion is more simple analytically, but demands more time for
computation.

{ll. ANALYTICAL INVERSION AND NEW EXPRESSIONS FOR ISOFACTORS AND OVERLAPS

The analytical inversion'”? is a discrete operation of the analytical continuation, the nonorthonormal isofactors, or other
resubducing coefficients to the dual ones. It may be associated with group automorphism, which corresponds to the transition to the
inverse elements of this group. The analytical inversion symmetry should not be mixed up with the hook permutation*® or the
substitution*® group symmetry. The analytical inversion is allowed only for the nonorthogonal isofactors represented in the
analytical form (in terms of the factorial sums) not being allowed for the usual algebraic-polynomial expressions.

The relation or the analytical inversion between the dual isofactors of SU(3)

(a'b’y Ilbll ” ”“abyl)_ i
—z (@b'y'i'a"b"y"i"||abyisp) (a'b yyisa"b "Vii | abpisp) (3.1a)

_ (a+1)(b+1)(a+b+2)
Qi+ D[+ 1)@ +b' +2)(a" + 1)@ +b" +2)]'?
X((—a —2,—b" =2, —y,——1,—a"—2,—b" —2,— ", —i" — 1| —a—2b~2,—y,—i—1) ) +i~!
(3.1b)

may be based after examination of the behavior of matrix elements of the SU(3) X SU(3) generators (see Sec. V).

This relation applied to Eq. (2.22) [and used together with Eqgs. (29.19) and (31.15) of Ref. 36 for 6/ and 9 coefficients of
SU(2) with some negative parameters} allows us to obtain the two following expressions for nonorthonormal isofactors (bilinear
combinations of orthonormal isofactors) labeled by the subscript:
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(@'b'y'i'a"b"y"i"|labyi) _ | ;
=(a+ Db+ 1(a+b+2)[2F + Q" + DN

Xz (_1)b"+7—2—i"+z—s+/(2r+1)(2’,l+1)
b =2 s —r+INB -2 s+ P+ 2DV (s =iy —Z,i,r)

- -, [ Y 4
X( (25 + 1! )vz V(s'P)T2(bars—if —v—2) [r’ r ig ] : i siz T
2 —b"+290) V& - +sinVis—ip—2dn T i s—is—2 °

r s
(3.2a)

. ., — )T ERE s L 1y (2F 4+ 1)
—(@+1)(b+1 b+ 2)[(2F + 1)(2" + 1)]'2N, (
(@+ 1)+ D(a+b+2)[(27 + (2" + D] ,;s(b,_i_s_r,)!(b,_z,_s+,,+I)W(si,r,)

X( (b” —22" + 25+ 1)!)'/2 V(iy + 2 + 8,7 )V(iy — 2" + s,i,r)
(2s)! (42 +v4+s—PIE+Z+v+s5+r+1)!
v V(i(’,+z’+s,7,r)(b—?(’,'—-z’—-v-—s+r)!
(t+z2 +v—b+s+rla+i+2Z+v+s—r+DWa+i+2Z +v+s+r+2)

<

iy i i —z"

ror 7(’,’
X1~ . . , ro i s R (3.2b)
I iy ig+2Z+s

i ig—2z"+s

where N; is defined by Eq. (2.23). Different versions of sums are obtained here depending on whether the summation parameter s
has been reflected (s— — s — 1) or not. Equation (3.2a) is equivalent to the expression''*° for the matrix elements of the
projection operators of SU(3). In all three expressions (2.22), (3.2a), and (3.2b) the summation intervals differ similarly as in Egs.
(9) and (12)~(15) of Ref. 37 [see also Eq. (22) of Ref. 16] for the multiplicity-free isofactors of SU(n).

The expressions constructed by means of Egs. (2.7)—(2.9) take algebraic-polynomial forms for the fixed irrep(a”b ”), param-
eters y", i",and shiftsa — a', b — b ', i — i’ [the multiplicity label 1 being correlated according to the correspondence (2.17)]. The
same property is satisfied by Egs. (2.22), but Eq.(3.2a) takes algebraic-polynomial form for the fixed (ab), etc., and Eq. (3.2b)
takes such form for fixed (a'd '), etc.

Asarule the expression (2.22) demands less time for computation because it vanishes for |i — I | > i; + 2’ + i — z”. The
application of Eq. (3.2b) will be discussed in Sec. VI.

The analytical inversion applied to Eq. (2.20) allows us to obtain the following expression for the overlaps of the dual
states (2.4) [compare with the SU(3) DSO(3) case, Eq. (5.13) of Ref. 17]:

(=g =+ Gsigiy — T3 |1, ™ Ggigly — ig)i,) !
=@+ = *7) =3 RyR;T (abi 5)T (abj 2)
ij

O+ D@ +b +2) (b +b" —b+v+ DU +b" +v+DWa+b'+b" +v+3)!
(@a+ 1) (b+1)(@a+b+2)aa"h"(a" +b" + 1)!
><((2?+ 1)<g]+~1)(7_+?~,)!(}+?z)!)'/2 (2 + 1) (2% — 22)!
(=i =i GO +b"+v—z+j+3)
(@ =224 220V 2(b" +v— iy — 2,i),))
(b'+b" +v—2z—j+ 2DV 3z — 2z, /)V 2 —z,J,/)T 2 (abjz)

3.3)

In region (2.10c) infinite terms with z < Z — a” /2 appear that vanish only after the expansion coefficients R;; from Eq. (2.19) are
used. Therefore, the additional condition z>% — @” /2 is expedient.
The substitution

a—-—a -2 b'-sad+b'+1 a"-a"+b"+1, b">—-b" -2 3.4)
(and v—b" —d' + v, iy —» —iy— 1, if = — i7 — 1) leaves the dual isofactors represented by Egs. (2.22) and (3.2a), (3.2b)

invariant (up to sign). The same substitution [along with the phase factor ( — 1 =71 applied tooverlaps (¢ _ _ ;|7_ , ;) and
(= *1|p~*7) [see Egs. (2.20) and (3.3)] allows us to obtain new expressions for those overlaps:

(@+ Db+ D@+b+2)(=1"%a"a" +b" + 1)
(b’ + )@+ b' + v+ DIV, DV, T T (ablz) T (abJz)

(m_ s 3lm-, e 5)=
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i+ 1 ! —j—z—= 1) — )! . . .
s W+ DG ooz 7T T0—24 D 5, gsyir2abizy V2 — v + 2y ),
S (@ +b"—-2+224+2)WN(z-3%1))V(z—2J,))
(3.5)
GB'+D)@+b'+2)b'—b+ND " +v+ Dl a+b" +v+2)!
(a+ DB+ D(@+b+2)a" (a" +b" + 1)!
X V(i,ig, 1)V (i,i5 JIT (abIZ) T (abJz)
XS (=D +o +1-9+50i 4 1)(2z2 — 22)1(a@" + b" — 22+ 2z + 1)!
o b Fv—z4+j+DNb Fv—z—j+ DIV — v+ 2,0, ))
XV=3z— 2z, j)V"2(% ~ 2J, /)T ~*(abjz). (3.6)
Expression (3.6) is equivalent (after some symmetry transformations) to the corrected Eq. (11) of Ref. 15. The expression
(3.3) outside the region (2.10c") includes terms of the same sign as well as Eq. (3.5) for b’ — b + v>0 (in both cases the states
|m_ 1) are not overcomplete). For b’ — b 4 v <0, Eq. (3.6) is indefinite.
The consideration of Egs. (2.20), (3.3), (3.5), and (3.6) allows us to prove that the functions

Mo oD@+ DG+ D@+b+2)b'Wa +b'+ Dla"t @ +b" + 17, (3.72)
(=g @+ DG+ D@+ b+2)bNa +b' + Dla"a" +b" + 1)), (3.7b)

are invariant with respect to the 24 = 6X 2 X 2 transformations of pattern (2.16) {from those of 72 mentioned above) that do not
interchange the parameters of the two last columns with the remaining ones.

Separate sums (with respect to j + z) in Egs. (2.20), (3.3), (3.5), and (3.6) may be represented as the Saalschutzian®'
« + 1Fx (1) series. Single sums remaining for extremal values of I or J are equivalent to the Saalschutzian ,F,(1) series; however,
they are not of the type that appears in 6; coefficients of SU(2).

It is remarkable that both sums in Eq. (2.20) are finite for the fixed values of a single parameter (g,,, ¢3, 43, O ¢3;) from the
pattern (2.16), as well as in Eq. (3.3) for fixed ¢,, or ¢.,, in Eq. (3.5)—for fixed ¢, or ¢,, and in Eq. (3.6)—for fixed ¢,5, ¢4, ¢33,
or q,,. The substitution (permutation)

a—b, deb”, a"<b’ (v— —v) (3.8)

(=g =+ = @I+ )@+ 1)

allow us to express corresponding overlaps in a finite form also for the fixed single parameters g,,, 24, 932; 9345 G115 4135 G231 9245 G115
412 4315 O G33, I'eSpective]y.

For b—22=b"—a" + a + v fixed (along with fixed b —z — Tand i— z, where I>J ) it is expedient to introduce the
renormalized overlaps
El? — (77_‘+j|7’-'+‘])[(1+2)(~1)(bv22+ |>("]+2)(_1)(b~22+1)]|/2

au(vl)(b—22+l)(an +b” _+_ 1)(—])(b~—2'z+l)

, 39
B @+ Db+ D@+b+2) oo
F,_J=(ﬂ,,+,1ln_,+.1)[(b__2+j+1)(b_zz+1)(b_2+j+ 1)—22+D]1/2
(b —2%) ] ' (b—22)
g lat Db+ 1)(@+b+2)b (@+b'+1) (3.9b)

QI+ 1)(J+ 1)@ + 1)@ +b"+2)

equivalent to polynomials in five free parameters (e.g., a', b’, a”, b ", v) of the total degree
3(b—2—|I-J) (3.10)

with integer coefficients (and common integer factors under the square roots for 1#J) when Eq. (2.20) or (3.5) is used for

(n_, 4 1lm_ + y)andEq. (3.3) or (3.6) along with substitution (3.8) used for (™" * 1 =+ 7). Some concrete expressions for

E;; and F* are given and discussed in Appendix A.

The above mentioned invariance properties of functions (3.7a) and (3.7b) allow us to express the overlaps for other fixed
single parameters of g;; (j<4) type [from pattern (2.16)] in polynomial form.

IV. STRUCTURE OF PARACANONICAL AND OTHER ALGEBRAIC SYSTEMS OF ISOFACTORS
The usual and dual Gram—-Schmidt processes give the following expansions of the orthonormal states &, (1<a<n):

<77n17n),__(77n77a+l>77n
£, = [T+ 12 det S (4.12)
<7’a77n>,‘_<77a77a+1)7]a

mm) - AmWa_ 1 2{M1Mg)

= [l"al"a_l]_”z z det
. e

. . . 7°, ) (4.1b)
M) a1 Y M)
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where (77,7 ) = 8,5 and the minors
(nnnn)“,<nnna)
re=det|- -« - « « o,
(m*n") - {n"n")

r, =det|-

appear.

(mm) A mne)

Mam) {NaTa)

Now the boundary paracanonical isofactors [i.e., the orthogonalization coefficients of the general paracanonical isofactors
according to Eq. (2.24)] for ¢,, = b' — a” + a + v fixed may be written as follows:

(@'b'ysiga"b "35ig||abyil)

[+ DG+ Da+b+2)b" D@+ b+ N D(b—z4i41)C D12 Ky 81,
- a”““‘"‘“”(a"—f-b”+1)“”‘7‘“”(i+2)(‘”‘7_“”

for min(b — Z,a + 3,i} + iy + iy)>I>i>max(|i,|,|z|) and
vanish otherwise.
Here

K?.i - [(j+;z)(7—i)(j__7z)(7—i)
X U +75 — D™y + T + T+ D0
X(@a+z—-N9"a+z+T+ 1) 0]"2,
(4.3)

where ky; is an irrational factor (the common measure) of

GCZN

The factors g5, (b — 2>I>i>Z) are polynomials with some
integer coefficients in free parameters of the total degree

(4.4)

3b—z2—-T+1)T~32) —3(T—10). (4.5)
There are two possibilities to express these polynomials:
Eb-;,b_z"'Eb—z,7+1 Eb—i,i
gZ[=det . . . - . e . . - . .
E?,b —z" 'E7.7+ 1 Eli
X(b—z+T+1)¢2-P
. b—z—1 -1
x[(b—z+i+1)<b-=-”1<;,,- 0 e
j=TI
Fuz_,F&J—l 0
=det | Fi*--FH-1 | (4.6a)

X(i+2)(—l)(7—z+l)

. L J—1 -1
x[(2i+1)(I+2)“”"“’Kz,~ m sl

j=z+1

(4.6b)
where
g =b"""""a + o'+ 1)
X(a+b' +v4+1)P-2=0
X@+b'+b" +v4+2)b—-2-0
XMb—Z2+j+ 1 ") (4.7a)
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1/2

4.2)

[ 817 81+1741]

{
f,-=(a"—a—v)“”(f—i)
X(a’+a” —a—-v+ 1)(—1)(]-2)
X (a" 4+ 1)(-hu-»

X(a” + b ” + 2)(— l)(j*i)[(j_+_2)(-1)(j—2)]2,
(4.7b)
and the determinant of the order b —z — T + 1 ‘appeared in
Eq. (4.6a), as well as the minor of the order I — Z in Eq.
(4.6b). Particularly (see also Table I)

_ _ — b2z
8b_zi1b—z41=8::=1 &_sz:=(—1) f
_ 2
8_zi=Ey 5:/Ky_siv &i1:01=F%,

— £+ 12
&1z = —F*T/K, ;.

The polynomial form of g;; may be proved at first for the
denominator factors g; ;. In this case X3 ; = 1 and the products
e; f; are completely determined by dual constructions of the
type (4.1a), (4.1b) from Eqgs. (3.10a), (3.10b). The appear-
ance of the factor b'®~2~7 in e, caused by the null space
property, i.e., by the appearance of linearly dependent columns
of the determinant in Eq. (4.6a). The complementary factor
(a" —a—v) DY~ in £ allows us to counsel vanishing in
region (2.10c) factors of the determinant in Eq. (4.6b). Four
first factors of e, (or f;) are interrelated by substitution (3.4)
and the permutation of the second and third rows of pattern
(2.1b). The choice of the last factors of e; and f; is completely
determined after expansion of the type (2.11) and some cyclic
permutation of the parameters of the boundary isofactors.

Elementary special cases of g7, (8, _5:» &3,andg; 1)
along with g;; leave no ambiguity for determination of the
general case of Eq. (4.2).

The invariance of functions (3.7a), (3.7b) allows us to
deduce the invariancy of the function

(a'b’ysiza”b "Fgiz|labil)

X[@a+b+2)(a+1)(b+1)

Xb'Wa' +b'+ Dla"(a” +b" + 1)1]712 (4.8)
under the same 24 transformations of pattern (2.16). This in-
variancy leads, in fact, to the reduction formula of the bound-
ary paracanonical isofactors as a function in eight independent
parameters (a',b',a",b",a,b,1,i) with three linear combina-
tions fixed. For example, a polynomial expression with param-
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TABLE L. Polynomials g;, for small values of b — 2z.

b—2:=1, 3=4(b—1); Li=ibxt1)
s s =@ +2)(b+ 1)@ +b6" —a+3)
—ab—v)(b" +v+2)

b—22=2 z=ib—1; Li=lb—1Liblb+1
ko srnrs =kosmpn 1 =2
8or2pn =b' (b —1)b(b+ 1)(a" + 5" + v+ 52
+2(0'— 1)+ 1)(@" +b" +v+5)
X+ D(a+b)(b"+v+2)
+W+2)Pa+b+ D" +v+3)?
8o paar =B +b0" +v43)2(b+2)P(a" +3)?
—2(b"+b" +v+ )b+ 1)
X(@a" +3)a-D(b~-v)(d" +v+3).
+d?(b" + v+ 3)P(b—0)?
8vrstpr=ab—v—-D(b"+v+2)
—b(b'+b" +v+2)(a"+3)
Conbn1=—(b'—1)(b+2)@ +b"+v+5)
—W+2)b"+v+3)a+b+ 1)

eters a,a + % — I,i — zfixed may be obtained from Egs. (4.2)—-
(4.8) after substitution

a—sa+b'—a"+v, bob—-b'+a" —v,

(4.9)
a”—’b’+v, b”—’b”.

a-a, b'—-a" —v,

The polynomials g5, are invariant with respect to the
substitution (3.4) and permutation of the second and third
rows of pattern (2.16), when the denominator polynomials
g7 remain unchanged after the permutation of the couples

of the columns (3,4) and (5,6).
. |

(@'bysi3a"b 335 | abis))

Those permutations of pattern (2.16) that transpose the
parameters of two right columns with the remaining ones lead
to other versions of the boundary region of paracanonical iso-
factors of the same classification type.

The structure of the null space (the ordered vanishing
properties with decreasing multiplicity along with conserving
orthogonality) of general paracanonical isofactors is caused
particularly by the main (first) factor in expansion (2.24), by
thefactors b’ ~*~ P, or by zeros of the polynomial g;; [ when
the parameters g5 or g, of pattern (2.16) are minimal, respec-
tively].

Different choices of the boundary region lead to differ-
ent expressions of isofactors and give different interpreta-
tions of the same null spaces. Contrary to the SU(3) canoni-
cal tensor operators,”®?! the null spaces of the paracanonical
tensor operators are not lexically ordered. The linearly de-
pendent states appear from below, though some natural in-
equalities cut off the multiplicity labels from above. After
cyclic permutations (2.17"), the null spaces of different na-
ture exchange. Such symmetry is absent in the case of the
SU(3) canonical tensor operators; in our case the conjuga-
tion symmetry is spoiled: the conjugation connects two alter-
native versions of the paracanonical classification. Other-
wise the conjunction along with transposition (a'b’)
«>(a”"b") [i.e., permutation (3.9) ] does not change the type
of paracanonical splitting. Therefore the symmetry group of
general paracanonical isofactors includes six elements of 12
considered in Ref. 30.

The Gram-Schmidt process, begun from the opposite end
(i.e., when the linearly dependent states appear from above),
leads to the pseudocanonical system of orthonormal isofactors,
defined by vanishing of isofactors with parameters

J—isii+2 4+ —2". (4.10)

A conjecture may also be made about the structure of the
boundary pseudocanonical isofactors

=[ (a+ Db+ D(@+b+2)b'" (' +5'+ NV 27"V ]'/2 Ky 8 @11)
an(——l)(b~J—2+l)(a” +b" + 1)(~1>(b-1—2+1)(b_2+i+ 1)(b—.7~2+1) [§7—1,3—1 gull/z ’ )
for max (|z],[7,|) <J<i<min(b — z,a + 2,i, + i;). Here
—Ez,z' Ez,J—l Ei,i i . i 7 1
gy =det|: - .. (]+2)(_l)(1—2)[(i+2)(_])(J—2)K“,J H ?j] (4.12a2)
| E5: " Ez5_1 Ejy FeEd
'Fb—z,b-z_,,Fb—z,J+1 0
= det Fi,b—i, . _Fi,.7+1 1
LF.'I,b—E,,,F.'I,.'I-kl 0
. . oo b—3-1_7-1
X(b—2+l+i)“’“i‘J+”[(2i+1)(b-—2+J+l)“’_’“J’K,-‘3 H j;] (4.12b)
i=J+1
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are the polynomials with integer coefficients:
g=b"""P@+b' + 1Y Na+b +v+1)V?

X(@+b'+b"+o+Y2[(j+H VU,
(4.13a)

f=(a”_a_v)(~l)(b—2—j)

J
X(@+a —a—v+1)(-DE-2-p
X(a"+1)(—1)(b—2~j)(a”+bll+2)(-l)(b—2—j)

X[(b—z+j+ 1)e—-2-n]V2 (4.13b)

In the pseudocanonical case, the quantity of the type (4.8)
is also invariant with respect to 24 permutations of pattern
(2.16), though different versions of the boundary region lead
to different schemes of the pseudocanonical classification. For
example, the isofactors represented by Eq. (4.11) are invariant
only with respect to substitutions (3.4) and (3.8). Sometimes
[e.g., when the minimal values in pattern (2.16) are accepted
by parameters ¢s,, gs3, ge2> O gg3] the indefinites 0/0 may
appear in the right-hand side of Eq. (4.11).

It seems that different pseudocanonical and paracanoni-
cals systems of isofactor are related by the same hook permuta-
tions*® or substitutions.** Thus both paracanonical and pseu-
docanonical algebraic systems of isofactors are less symmetric
than canonical ones with respect to the substitution group.***°

V. LABELING OPERATORS FOR ORTHONORMAL
COUPLING COEFFICIENTS OF SU(3)

The multiplicity problem for decomposition (a'b’)
X(a"b") to (ab) may be solved with the help of the SU(3)
invariant operator?*2°

QaB)=ay D,EL +B8Y DPETD, (5.1)
po po

where

[aD (b, +BMD D 1|(a'b’)(a"b " )abyii,) _ , ;

nab
Vodoiy

’ ” 1
D, =E, ~E.. D% = - 2 (D,,D,, +D,,D,,),
(5.2a)
’ ”n 1
E,=E, +E},, ED= > Z (E,.E,+EE,)
(5.2b)

form the SU(3) irreducible tensors of rank (11) in the envelop-
ing algebra of SU(3)'XSU(3)". Particularly D, and E,,
(with 3, D, =0and X, E,, =0) are the generators of
SU(3) xSU(3).

The traceless part of Q(a,/3) [with the eigenvalues de-
noted by g(a,B)] is invariant for the even permutations be-
longing to the symmetry group S, X S, of the Clebsch-Gordan
coefficients of SU(3).>® For the odd permutations it conserves
or changes the sign, if @ = 0 or 8 = 0, respectively.

The SU(3)-reduced matrix elements of the operators Dpa
and D {2} may be found in the basis (2.2) with the help of the
transposition formula'>>? of the tensor and projection opera-
tors

Tﬁ:Pﬁ,u = /12 dim(/l)dim“'(/_l)(zlp/l,yll/_l;_t)”
Aru

X3 (Apdy |A), PL, T, (5.3)
wit

where A = (ab), p = yii,.

The explicit form of the projection operator wa
is unnecessary. The operators D,, (p#0) acting on
la'b Y uwsla”"b ") ws maybereplacedby + E,, (with + for
p>oand — forp <o) and thus they may be included into the
projection operator. With considerable effort, many terms ob-
tained on the first stage were united and the following represen-
tation of the operator aD,,, + 8D ‘2 in the irreducible form
was obtained?®:

= Y Bdim(ab)dim™"(ab) (abyillyi,||abyisy) (ii,iym,|ii,) 3 (abpl 1101||abjd;y) (I7, 101Ji,)2 "7
J

X[a/B+ys —F5 +2+1filab) —1 @by + T-NHT+T+ D)@ +b6" +2+ T-DT+T+1)]

+ (abpl 1100||abi;y) 6~ 265{[3(Fs — ¥6 — 2) + 3 fy(ab) — 3 £3(ab) | [a/B+4( ¥ — y4) — 1]

+4IT+1) —d'(@ +2) —b"(b" +2) + 8,6, [} 7 —2—4I(T+ D] — 228,01+ 184541 + Bga 1855 1)
—2(@+2+1)28,,, 5 —2(0— 2+ 1)%8,,, 5} + 8,,0505{4 67'/2f,(ab)f 7 *(ab)b,, + 8, f3/*(ab)(— 1)
X [2ab(a+2)(b+2)(a+b+1)(a+b+3)]7"2[¢ fi(ab)f; "(ab) — 4[5 (ab) —} fr(ab) — % f3(ab) + 7

+34@b)P — 15 + PTT + 1) + 4 £(ab)IT + 1) — 41 *(T+ D2 N[ (a@'b’) (a"b "Yabyii,) _ , 5,

(5.4)

where j =y, + ¥, I, = it, — i%, f,(ab) and f,(ab) being the eigenvalues of the Casimir operators defined as

f(ab)y =a* +ab+ b*+3a+3b, fi(ab)=(a—b)(2a+b+3)(a+2b+3).

(5.5)

[For B = 0 an elementary limit transition is necessary in Eq. (5.4).]

The use of the coupled basis |57 _ _ ;) (or |5, _ ;)) is preferable because the reduced matrix elements in the right-hand
side of Eq. (5.4) are expressed in terms of the SU(3) Clebsch—Gordan coefficients and the eigenvalues of the Casimir
operators of the intrinsic subgroups and depend only on the intrinsic parameters of the bra and ket states [ compare Eq. (45) of
Ref. 53 or Egs. (2.3) and (3.3) of Ref. 54 in the SU(3) DSO(3) case]. The corresponding isofactors of SU(3) DU(2) in the
right-hand side of Eq. (5.4) [in the canonical labeling scheme, with ¥ = 1 corresponding to the SU(3) generator matrix
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elements] are tabulated in Refs. 19, 55, and 56 (see also Ref. 57). [ The factor ( — 1)? is negative only in the phase system of
Ref. 57.] Rather simple matrix elements of the generators D, are useful for motivation of the analytical inversion symmetry,
because the corresponding matrix turns into the transposed one (with some factor).

Now the matrix elements of the SU(3) scalar operator (5.1) may be presented in the following tridiagonal form:

(=B n_ 1)

=85{[ —4/3(ab) — L fo(ab) — } f1(ab)§ + ) 7 + 4 f,(ab)i? — }5* 1B+ 15(a —b")(a' +b" +2)
X[{a+B(y, =55 +2)] —A[47 +34@b) ] [3( ¥, —F + 2)a+Bld(@ +2) +b"(b" +2)
=3V =T+ =P+ 2] +4@ —b")@ +b" + I "I+ D7 [a+B(ys —F5 +2) ][4 f(ab)
— 1P 0 fab) + 3 + T+ (Y =5 +22)a—TT+ DB [y —F5 +2)2 — 357
—4@(@ +2) —4b" (6" +2) —3£,(ab) + 2T+ 1) =11} =&, [T+, + DT =7, + 1)
XT—2+DIT+2+D(a+i-D(a+z2+T+2)(b—2-D(b—2+1+2)]'?

(@ +b" +2I+4)
[RI+1)QRI+ 31T +1)

1 1 ,
[7a+[7(}’0

%)—T]B]

=8 [T+i)T =0T+ T-H(a+:i-T+ D(a+z2+T+ Db —2-T+ 1)(b—2+T+1)]"?

(@+b"—=2T+2)
[T+ 1)(2T— 1))

The Lindependent terms of the diagonal matrix elements may
be omitted. The parameter  may be zeroonly whena’ = b ”.In
region (2.10c) the nonvanishing matrix elements
(=@ (@B n_ 4 )
=Ry 50" 27 QaB)|n_ , 8 (5.7

also appear, and the action of operator (5.1) in a complete
basis (2.2) may be represented as a sum of Egs. (5.6) and
(5.7). [ Wefailed to eliminate explicitly the trace of the oper-
ator Q(0,1).]

The eigenvalue problems of the operator (5.1) split into
two more elementary problems for special integer values of 3a/

B for which some nondiagonal matrix element in the right-
hand side of Eq. (5.6) disappears. The discriminant

g (a,B) = [4fy(ab) +9)a® —§ fi(ab)aB + ¢ f5 (ab)B?
(5.8)

of the eigenvalue problem for the coupling (ab) X (11) to
(ab) (with a double multiplicity of irreps) gives rational prop-
er values of the traceless operator @(0,1). In this case the ei-
genstates of Q(0,1) correspond to the canonical splitting
scheme.?>® The positive eigenvalue ¢(0,1) =4 f,(ab) corre-
sponds to the state coupled with the help of the SU(3) gener-
ator matrix elements.

In general,the eigenstates of the operator Q(0,1) belong to
the symmetric or antisymmetric subspace of the direct product
space (a'b’)X(a"b") (where a’'=a", b'=0") in accor-
dance with the Derome™ pattern, i.e., it corresponds to a defi-
nite one-dimensional irrep of the above-mentioned symmetry
group S; XS, of the Clebsch—Gordan coefficients. The ques-
tion whether concrete eigenstates belong to a symmetric or
antisymmetric subspace remains, in general, open, as well as
the problem of the dependence of the phases on this multiplic-
ity label.

However, the coupled eigenstate of the Pluhaf operator'®
[Q(1,0) in our notations] is, in general, neither symmetric nor
antisymmetric because it belongs to a reducible representation
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1 1 _ ~
[7a+ [T(ya e 1)]1?}.

(5.6)

of the group S, X.S, (which is a sum of symmetric and antisym-
metric irreps). In this way the independence of the phase fac-
tors in Egs. (5.3) and (5.4) of Ref. 18 from the multiplicity
label may be explained. Undoubtedly these phase factors are
completely motivated in the multiplicity-free cases.®

It is evident that the elements of the transposed matrix
(5.6) [with additional terms (5.7), if necessary] give the
action of the Hermitian operator (5.1) in the dual basis
(2.4). Then the solution of the eigenvalue problem [along
with the expression (3.3) or ( = 0.6) for overlaps] allows us
to expand the g(af3)-classified SU(3) coupled states in
terms of the states (2.4), and thus to find boundary values of
the g(ap)-classified isofactors. Later, with the help of Egs.
(2.22) and (2.24) most general g¢(a,B)-classified
SU(3) DU(2) isofactors may be evaluated.

The use of the symmetry relations of the Clebsch—Gor-
dan coefficients of SU(3) always allows us to omit addi-
tional expansions that usually appear simultaneously in Egs.
(2.24), (3.3), and (5.7). In different minimal coupled bases
matrix elements of the operator (5.1) are related (up to
trace and phases) by some substitutions of parameters.

Only a special case of Eq. (2.22) proportional to the 6/
coefficient of SU(2)%'>'7 [i.e., Eq. (4.4) of Ref. 18] is need-
ed for special SU(3) DU(2) isofactors necessary for obtain-
ing the SU(3) DSO(3) isofactors by means of the slightly
modified Engeland®> method. The realization of both
SU(3) DSO(3) internal labeling operators in the Elliott>?
basis is given in Refs. 54 and 58.

Thus general SU(3) DSO(3) isofactors with complete-
ly solved inner and outer labeling problems of the repeating
irreps may be evaluated.

VI. ON REALIZATION OF THE CANONICAL SPLITTING

The properties of the canonical SU(3) unit tensor oper-
ators 7(a"b ") are discussed in detail in Refs. 21, 31, and 32.

The multiplicity label f ", which accepts the same values as
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the label I” in |7_,1”, — ) if the linearly dependent states of
the latter are chosen from above, may be used instead of the
operator Gelfand—Weyl-Biedenharn pattern. The shifts
a—a and b—b’' are completely determined by i}
=i(a—d')andz =}(a" —a) —vory” =y, — .

It should be noted that the pseudocanonical SU(3) tensor
operators obtained from |7_,I", — ) by means of the Schmidt
process, beginning from below, have the same null-space struc-
ture as the canonical ones. However, the pseudocanonical ten-
sor operators lack the majority of the above mentioned symme-
tries of the canonical or the paracanonical tensor operators.

The orthonormal canonical isofactors with the parameters

* *
"4 i—i>a"+b" —~J o +J", (6.1a)
where
%k
Jé'm =min(a” +z",b" —z")>J " >max(|i;|,|z"|),

(6.1b)

vanish [cf. Eq. (1.32) of Ref. 21]. As a matter of fact, the
canonical splitting is completely determined by (6.1) when the
maximal values of i” =i”, and i ={, where i, — i, >|2|,
2=1(b— a — v) [or, respectively, i" = iy, and i = i,,,, where
i, —i%>|2|,2 = }(b’ — @ + v)] arechosen.”"** This prop-
erty of the canonical tensor operators is caused by the group
generators included in their structure.

Vectors (2.1) with the parameters i' =i, —i,, Y=y,
"= —i/-i,y" -y, and 1-71 (i, >»iy,) form a complete
nonorthogonal coupled basis

|77t,1,7> = | (@'b’)(a"b” )abyﬁz>t,x,7
= POy 1a'b v )a"b "y, —

(ot (6.2)
The corresponding orthonormal basis obtained by means of
the Schmidt process beginning from the lowest value of I is
equivalent to the coupled basis constructed with the help of

the canonical isofactors and labeled by

* * Iy

J'=i, —in+Jr—1 (6.3)
at least when the external multiplicity of irreps coincides with
the asymptotical multiplicity

M =min(g;) +1 (i=23, j=3456). (6.4)
[.# is expressed in terms of the parameters of pattern (2.16)
depending only on &”, ", a — a', b — b'—cf. Eq. (1.11) of
Ref. 21.] The asymptotical and usual multiplicities coincide for
I —in 2|2 or i, — iy >|2|.

As seen from Eq. (2.1), special bilinear combinations of

J

|_’7,,1J> =z (— 1)(a"+b')/2+f+7[(21+ 1)(2j+ 1)]1/2 ’5;, +(
¥

SU(3) isofactors are needed to construct the states (6.2).
However, the known analytical expressions'*' for the bilinear
combinations of the isofactors in the right-hand side of Eq.
(2.1) remain nonpolynomial for fixed (a”b ") and correspond-
ing shifts.

It is remarkable that the coupled basis (6.2) may be ex-
panded in terms of the states (2.2) as follows:

1,,,7) =3 (= D@ +e2+1+11 o] 4 1) (2T + 1)]'/?
1
7
x[‘;g ]In_+1) (6.5)

In the right-hand side there appeared the 6 coefficient of
SU(2) with the parameters

a=lb—b"+a"—v), B=
=1(b—v).

Here the summation is taken over the states of the complete or
overcomplete coupled basis. This expansion is equivalent to
Weyl transformation® between different SU(2) subgroups in
SU(3). Thus special isofactors

Wa' —b"+b—v),

((alb'y:n ”b y" ” “abyl))_ s+ 1
= (i, iyt — i i, — i) (i igty — B\ Ty — 7))
X (— 1)@ +e02+ 1402 4 1) (2T 4+ 1)]'?
a
- 6.6
x[y "7 (66)

are found, which may also be expressed by means of Eq. (2.22).
The double sum obtained has been taken for the selected extre-
mal values of i or T with the help of Eq. (14) of Ref. 37.

Thus Egs. (6.5), (3.2b), and (2.20) or (3.5) (after some
permutations of parameters) allow us to express the SU(3)
canonical isofactors in the algebraic polynomial form by means
of the Schmidt process beginning with Z,.,;,, (i.e., from the maxi-
mal null-space case, similarly to Ref. 21). )

Otherwise, the dual coupled basis 5" ) allows us to ex-
press the SU(3) canonical isofactors by means of the Schmidt

A

((a+z—I)'(a+z+I+ DUb—2—DIb—5+i+ 1)')1/28i8"v

(a+2—t)'(a+z+t+1)'(b—2—})'(b—2+7+1)'

(— 1)7'-3(2?+1)(§+2+1)'

X

G-DGE+I+DB-DB+T+ DB
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process beginning with 1 max» Which corresponds to the minimal
null space. For
M =min(a" —b' +b—v,
b" —a' +a+v,b",b" +v) + 1, (6.4)
the dual coupled basis may be expanded as follows:
d+ 291G = 291G = Ly NI+ T, )1/2
(i + 0T — (T — ?m.n NG + T
a B ;] -+
- 1)'] [7 ja T |7 )s (6.7)
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where

N>

=%(b—a—v), |2l<}min %(a'+b,—a”—b")9

SB=4(@' +b"—a"+b" +v— o)), I<i(a'+b"),
I, =min[}(a +b— |v]),B].

The second term in braces on the right-hand side of Eq. (6.7)
does not vanish only when the basis |7, ;) is overcomplete,
ie, # =min(b",b" + v) + 1 and the recoupling matrix of
SU(2) in the right-hand side of Eq. (6.5) is truncated. In this
case the expansion coefficients of |7"'/) in terms of [~ +)
form a matrix inverse of the truncated one. Their derivation is
shown in Appendix B.

In fact, Eq. (6.7) allows us to construct nonorthonormal
isofactors that satisfy the boundary condition

>

(@'b'y,,ira"b "y i labi) " = &,
for 1<1A9 (}gﬁ).

When .# is different from the one defined according to
Eq. (6.4a), basis |77_ , ;) is overcomplete and therefore it is
more convenient to use the basis [%'*"') expanded in terms of
|7">~~) instead of |"*).

If the external multiplicity does not coincide with .#, the
numerical orthogonalization of bases |77, ,;) and |5"**) does
not always lead to the canonical isofactors. Sometimes the al-
ternative version of the canonical classification appear, which
may be associated with tensors of rank (a’b’).

Algebraic expressions for the matrix elements of 7(a”b )
obtained may be used in this region if the indefinite (vanishing)
factors in the numerator and the denominator are eliminated.
The knowledge of the properties of the denominator func-
tion?'is undoubtedly very useful for the maximal simplification
of algebraic expressions for the orthonormal isofactors of the
canonical type.

(6.8)

Vil. CONCLUSIONS

In this paper the pluralism of the external multiplicity
problem for SU(3) is demonstrated. Depending on the situa-
tion, one may choose either the analytical biorthogonal systems
or the algebraic or numerical orthonormal isofactors. The later
may be labeled by the irrational (in general case) eigenvalues of
the classifying operator or by the intrinsic isospins (by the Gel-

J

fand-Weyl-Biedenharn operator patterns, respectively). The
required symmetry of isofactors and their additional selection
rules may serve as arguments for the choice between the ca-
nonical and paracanonical splittings.

Completely analytical expression (in all 12 parameters)
for the orthonormal isofactors of SU(3) seems impossible. By
means of the proper Gram-Schmidt process, analytical expres-
sions for the matrix elements of the canonical and paracanoni-
cal tensor operators may be obtained when at least the differ-
ence between the multiplicity label and its extremal (minimal
or maximal) value (i.e., the number of steps of the Schmidt
process) is fixed. For example, the relation between the de-
nominator factors of the minimal null-space case and the maxi-
mal null-space case®>** corresponds in some aspects to the ana-
lytical inversion symmetry of the overlaps.

However, analytical expressions in the canonical case are
much more complicated and sometimes the limit transitions
are indispensable. When a sufficient number of parameters is
fixed, the corresponding expressions accept algebraic-polyno-
mial form. In all such cases the minimal biorthogonal systems
remain the universal element of the optimal construction. Al-
though the transformation between the minimal biorthogonal
systems and the systems associated with canonical splitting has
simple interpretation, the corresponding unitary transforma-
tion between the canonical and paracanonical tensor operators
is not simple and not related elementary with the SU(2) recou-
pling matrix or with the Weyl transformation of the operator
pattern.

Thus three versions of the canonical splitting [ correspond-
ing to fixed (a”b "), (&',b"), or (ab), respectively] and two
versions of the paracanonical splitting along with six versions
of the pseudocanonical splitting give different algebraic sys-
tems of the SU(3) orthonormal isofactors which are deter-
mined by the additional selection rules, their null-space struc-
ture, and symmetries of isofactors. However, situations exist
when different solutions are more convenient, €.g., the bilinear
combinations of SU(3) isofactors in the right-hand side of Eq.
(2.1) with » =i’ =1” =1=0 may be expressed as double
sums only by the methods of Ref. 60. Such bilinear combina-
tions appear as the expansion coefficients of the SU(3) DU(2)
spherical functions. The specific external multiplicity label in
this case is not simply correlated with those discussed above.

APPENDIX A: ON THE POLYNOMIAL FACTORS IN OVERLAPS

The renormalized overlaps [see Egs. (3.9a) and (3.9b)] for the fixed b — 2Z accept the following forms:

Eyy=[d+i) T 20 =) "6+

— DI+ iy + T+ DY

X@+2-NT"a+z+T+ D9 —z—-DT=V/(T-)1(JT —2)1]"?

. J—3z b—E—Y)
- ad+b" +b+ x4+ x,
X3 (= 0

(b+x,—x,+ 1)

(b+x,+ D=7 T+0

X(T=3)(b—2—T—x) " DUTI= (a4 b 4o+ DR+ (b +b" —b+v) ~ D
X(b'+b" +v+ 1DV —2+ T4 DN (b—2+T+ DT+ VT -y
X(}—Q—Z)(*”(b_z_)"‘?’(a+2—-.7)(“1)(3’2_""(a+2+7+ 1)(—1)(b~2—7—x1)(j+2)(—1)(b—2—7—-x3)

XUy +T5 =D 3172 (0 g + T+ D727,
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—])”—b(ia +ig+ I+ D97
—DNI=D /T —3WT -]

FP=[d+5) " "d =) "2 + 1
X@+3—DNT"Da+z+IT+ 1)V -
b+x—x,+1)

b—z—1
szx ( )( X, (b_xz)(—l)(7_2+|)

X(I~z)"°')(b—2—.7—x )(—l)(.-l-—i—x.)(an _
X (T 2)~DEN(F 47y~ De-z- T—wy e 430 4 T4 1) D02 T-x

X(@+2—J) —PU-F=x)(g 1 54 J4 1)~ De-z-T-x)pp 4 Gn_ Jy(=DUI=2=x)
X(b—2+T+ 1) -

_ )( — x, +*=’(7+2)( - D(x)

YT -2+ T+ DY@ e + b — v+ 3) (@ +a" — v+ )P,
(A2)

where I >.7,

(— 1) (x)

=(A+x)P=A+1)(4+x).

()= 7 s

Some efforts are necessary in order to demonstrate that E; y and F*’ are equivalent to polynomials in free parameters. The
factors (b+x, + 1)~ %~ 7+1 and (b—x) DI=2+1 i denommators may be canceled in an elementary manner for
T=b—%0rJ=7%and less easily for T=b—% — 1 or J=2+ 1. In order to prove the general case of Eq. (A1) being
polynomial, it is sufficient to show the absence of the poles caused by the denominator factors of the type
LT +24+1<L<b—3+T+1). Really, both the invariance transformations of functions (3.7a), (3.7b) and the compen-
sating transformations with coefficients of the type (2.11) (along with usual symmetries of isofactors and relabeling of
parameters) lead to the mutually excluding sets of possible poles.

APPENDIX B: TWO RELATIONS BETWEEN THE 6/ COEFFICIENTS OF SU(2)

Similarly to Eq. (6.5) the following expansion of the minimal coupled bases may be found:

b b” 1 b—- 7
|1’+,—,I>=;(_1 ]1/2 2( +a — v) 2( v) ]l _+,})

a+b +a" +b" 27 1 1

. (B1)
2
When thebasis [7_ , ;) (butnot|n . _ ;)) isovercomplete, the SU(2) recoupling matrix in the right-hand side is truncated
by the additional condition I<i(a” + b'). It is clear that the recoupling matrix truncated by the conditions 7>B and
I<i(a” + b’) gives the inverse expansion of the linearly independent states |_ _ ;) in terms of |7, _ ;). Equation (B1)
along with (2.19¢) gives the expansion in terms of linearly independent states. In such a way the inverse of the truncated
SU(2) recoupling matrix is found.
Equations (B1) and (2.19¢) lead to the following relation between the 6f coefficient:

a b e (=D %Q2g+1)(B+g)! V(abe)V(dce) [a b g
=Z , (B2)
d ¢ fl 4 (g—e)g+e+1)(g—B)(B—e—1)(B+e)! V(abg)V(dcg) c f
where
a+d>b+c, f<min(a+cb+d)+max(la—b||c—d|)—B
The substitutions a—a — 1, e— — e — 1 [see Eq. (29.21) of Ref. 36] allow to obtain the following equation:
a b e (=D FQg+ 1B +e+ 1) V(abg)V(dce) [a b g
=z P ; s (B3)
d ¢ fl & (e—g)e+g+ 1B —g)(B'+g+ 1l(e—B'—1)! V(abe)V(dcg) c f

where f<fnin — &min + B'- Equation (B3) is valid if the 6§  course, the solutions in different regions may be joined. Iden-

coefficients with the parameters f,,;, =d — b, g, =a — b,
Of frin = € — @, 8min = ¢ — d arenot vanishing. The symme-
tries of the 6 coefficients allow us to cover the remaining
cases of the recoupling matrices truncated from above. Of
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tity (B3) allows us to expand the linearly dependent states of
|7_ 4 1) interms of the linearly independent states restrict-
ed from above.Thus the inverse SU(2) recoupling matrix,
truncated in different ways, may be found explicitly.
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Unitary lowest weight representations of the noncompact supergroup
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The oscillator construction of the unitary irreducible lowest (highest) weight representations
of the noncompact supergroup OSp(2n/2m,R) with even subgroup SO(2n) X Sp(2m,R) is
given. In particular, simple rules for determining the SO(2n) XSp(2m,R) decomposition of
the unitary lowest weight representations of OSp(2n/2m,R) are derived.

I. INTRODUCTION

Lie groups play a fundamental role in the formulation of
physical theories. Over the last decade Lie supergroups and
Lie superalgebras have come to play equally important roles
in theoretical physics. They underlie all supersymmetric the-
ories such as superstring and supergravity theories. In prac-
tically all the theories in which supersymmetry enters at a
fundamental level the related supergroups turn out to be
noncompact. For example, the Lie supergroups that contain
the space-time symmetry groups such as Poincaré, anti-de
Sitter, and conformal groups are all noncompact. Therefore
the relevant unitary representations of such noncompact su-
pergroups are all infinite dimensional. Furthermore, one is
in general interested in positive energy unitary representa-
tions of space-time supergroups. These positive energy uni-
tary representations are said to be of the lowest weight type,
since the energy generator belonging to the noncompact su-
peralgebra has a spectrum bounded from below. The lowest
weight unitary representations are related to the highest
weight representations by a simple involution.

A general method for constructing oscillatorlike unitary
representations of noncompact groups and noncompact su-
pergroups was given in Refs. 1 and 2, respectively. These
representations are all of the lowest weight type, and for
space-time groups and supergroups they correspond to the
positive energy unitary representations. The methods of
Refs. 1 and 2 were further developed and applied to super-
gravity and superstring theories.> In Ref. 3, the oscillator
construction of the positive energy unitary representations
of the seven-dimensional, N = 4 anti-de Sitter supergroup
OSp(8*/4) ~0OSp(6,2/4) was given. Furthermore, the
spectrum at the S'* compactification’ of the 11-dimensional
supergravity® was shown to fit into an infinite set of short
supermultiplets of OSp(8*/4) (see Ref. 3). In Ref. 4, the
unitary lowest weight representations of the four-dimen-
sional N =8 anti-de Sitter supergroup OSp(8/4,R) were
constructed, and the spectrum of the S’ compactification® of
the 11-dimensional supergravity was fitted into an infinite
set of short supermultiplets of OSp(8/4,R ). The spectrum of
the S° compactification of the chiral N = 2 supergravity was
first obtained and fitted into unitary supermultiplets of the
five-dimensional, NV = 8 anti-de Sitter supergroup SU(2,2/
4) in Ref. 5. Somewhat later the results of Ref. 5 were con-
firmed by the results of Ref. 10 using differential geometrical
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methods. In Ref. 6, a complete classification of finite-dimen-
sional conformal superalgebras in two dimensions was given
and their lowest weight unitary representations studied. Us-
ing the results of Ref. 6, it was shown that the light-cone
actions of superstring theories in d = 10 can be interpreted
as singleton field theories of certain three-dimensional anti-
de Sitter superalgebras.''

In the references cited above the unitary lowest weight
representations of noncompact superalgebras L are con-
structed over the super Fock space of bosonic and fermionic
oscillators, which transform in the fundamental representa-
tion of a maximal compact subsuperalgebra L,. The superal-
gebra L has a Jordan decomposition (three-grading) with
respect to L,. The method readily gives the full content of the
unitary lowest weight representations of the noncompact su-
peralgebra L in terms of the finite-dimensional representa-
tions of its maximal compact subsuperalgebra L,. All non-
compact Lie groups that admit lowest weight unitary repre-
sentations have a Jordan structure with respect to their max-
imal compact subgroups.'> However, this is not the case for
noncompact Lie supergroups.'’ Recently the oscillator
method has been generalized to noncompact supergroups
that have a Kantor structure (five-grading) with respect to a
compact subsupergroup of maximal rank.'? This generaliza-
tion allows one to construct unitary lowest weight represen-
tations of all simple noncompact supergroups of the classical
type whose even subgroups are in the form of a direct prod-
uct of a simple noncompact group with a compact group.
The simple superalgebras of classical type, which include the
exceptional and strange superalgebras, have been classified
by Kac.' In addition to the references cited above, there
have appeared in the literature papers studying representa-
tions of OSp(2n/2m,R) for special values of » and m, using
different methods.'?

In this paper we shall generalize the results of Refs. 2
and 4, and give a detailed study of the unitary lowest weight
representations of OSp(2n/2m,R), which has a Jordan
structure with respect to its maximal compact subsuper-
group U(m/n). In particular, we shall give simple rules for
determining the decomposition of a unitary representation
of OSp(2n/2m,R) with respect to its even subgroup
Sp(2m,R) X SO(2n). We illustrate these rules with several
examples.

The plan of our paper is as follows: In Sec. IT we give the
oscillator construction of the representations of the compact
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group SO(2n) and the rules for determining the Gelfand-
Zetlin and Dynkin labels of an irreducible representation
(irrep) of SO(2n) from its lowest weight state. Section III
summarizes the unitary lowest weight representations of
Sp(2m,R) following Ref. 4. Then in Sec. IV we give the
oscillator construction and a detailed study of the unitary
lowest weight representations of OSp(2n/2m,R).

il. OSCILLATOR CONSTRUCTION OF THE
REPRESENTATIONS OF SO(2n)

The oscillator construction of the representations of
SO(8) was given in Ref. 4. The results of Ref. 4 can be ex-
tended in a rather straightforward manner to the group
SO(2n) for arbitrary n. The only subtlety that arises in this
extension is the qualitative difference between even n = 2k
and odd n = 2k + 1. The orthogonal groups SO(2r) with
odd n have complex representations, while for even n the
representations are all real. In this section we shall give the
general oscillator construction of the representations of
SO(2n) for arbitrary n. We shall see below that the differ-
ence between even and odd 7 cases is elegantly reflected in
the oscillator construction.

The Lie algebra of SO(2#) has a Jordan decomposition
(three-grading) with respect to its maximal subalgebra L, of
U(n) (see Refs. 4 and 16):

L=L ,eL,oL,,. (2.1

The generators of SO(2n) can be realized as bilinears of an
arbitrary number f= 2p + ¢ (£ = 0,1) of fermionic oscilla-
tors transforming in the fundamental representation of
U(n):

A,uv = ay'Bv - aV.B[l. -+ 87/;4 Vv s

AW =B —a B ey = — AL,

M‘; == a'u'av - BV.B# + (8/2)(?#7\1 - VVW) .
The parameter £ takes on the value O or 1 depending on
whether we have an even or odd number of fermionic oscilla-
tors, respectively. The expressions of the type a3, or a*a.,,

are a short form for a summation over a family of p oscilla-
tors a(r) and B(r) (r=1,2,...p):

o, B, = }p_‘, a,(nNB,(r),

r=1

(2.2)

, (2.3)
atq, = Z a“(nNa,(r) .

r=1
The oscillators a,, (7), B, (r), and ¥, satisfy the canonical
anticommutation rules

{a, (N9} =636, ,
8,(n.B*(s)}=6.6,,

{v.rt=6,,
{a,(r,a,H}={8,"B,}={y,rn}=0,
{a, N.B" )} ={a, (Nr}r={8,(ny}=0,
{a,(NB, )} ={a, Ny} =18, (N1} =0,

24

where u,v,... = l,.,nand ris=1,...p.
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The nonvanishing commutators of SO(2#n) are
(4., ,MG] = &A,, — 5.4
[4%M5] = 847 — 5,47,
(4, A = —6 M5+ M — M, +65M7% .
(2.5)
To construct the irreducible representations (irreps) of
SO(2n) one first chooses a set of states |€) in the Fock space
of the fermionic oscillators, which transforms irreducibly
under the U(#) subgroup and is annihilated by the operators
A, belonging to the L_, space. Then acting on |Q) re-
peatedly with the operators 4*” belonging to the L, , space

one generates a set of states that form the basis R of an irrep
of SO(2n):

R = {|Q),4"|Q), 447 |Q),..} . (2.6)

Since the fermionic oscillators anticommute, we have
(L, ,)* = Ofor k> nf/2, and hence the representation space
R is finite dimensional. We shall refer to the set of states |Q)
as the lowest weight state of the corresponding irrep of
SO(2n).

The Fock vacuum |0} is defined to be the state annihilat-
ed by all the annihilation operators a,, (), B, (r), and y,,. If
we have only one set of oscillators (p =0 and £ = 1), then
the only possible lowest weight states that transform irredu-
cibly under the U(n) subgroup generated by M* are the
Fock vacuum

vo 3

0) (2.7a)
and the “one-particle” state
740) . (2.7b)

On the other hand, for two sets of oscillators, i.e., p = 1 and
€ =0, we have (n + 2) nonequivalent irreducible lowest
weight states. They are

[0),
at|0),
a*a”|0), (2.8a)
a'a’ a0},
N .’
n copies
and the symmetric tensor state

(a"B¥ + a'B*)[0) . (2.8b)
One can, of course, construct lowest weight states by replac-
ing the oscillators @* in (2.82a) by 8 #. However, the resulting
lowest weight states are equivalent to those of (2.8a). If we
have 2p sets of oscillators, then the possible lowest weight
states are those that can be obtained by tensoring p copies of
the states of the type (2.8a) and (2.8b). For an odd number
(2p + 1) of sets of oscillators the possible lowest weight
states in the Fock space are those obtained by tensoring the
states (2.7a) and (2.7b) with p copies of the states of type
(2.8a) and (2.8b).

The U(n) = SU(n) X U(1) transformation properties
of the lowest weight states |Q2) can be conveniently labeled
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by using Young tableaux of U(n) and the U(1) quantum
number of |©2). The U(1) quantum number of |{2) genera-
ted by O = M, is uniquely determined by the U(#n) Young
tableau of |2) and the number f of fermionic oscillators,
since

Qr =M = Np —inf, 2.9

where Ny is the number operator of all the oscillators. For
example, the vacuum |0} is an SU(n) singlet with

Qr|0) = —inf]0) . (2.10)

The U(n) Young tableaux of the possible lowest weight
states |(}) have at most fcolumns. By taking a larger number
S of fermionic oscillators one can construct a lowest weight
state |Q}) corresponding to an arbitrary Young tableau of
U(n) with some definite U(1) charge.

The full U(n) content of an irrep of SO(2n) with a given
lowest weight state (1) can be obtained by tensoring the
Young tableau of |Q) with the Young tableaux of the sym-
metric tensor products of the operators 4#”. The Young tab-
leau of 4" is simply , and since [4*",4%] =0, one
needs to consider only the symmetric tensor products of

A* =~ H , A”VAAP:BH ® E oo -

In tensoring the Young tableau of |Q2) with the symmetric
powers of one has to keep in mind that the resulting
Young tableaux have at most f columns. The states corre-
sponding to Young tableau with more than fcolumns do not
exist in the Fock space of f fermionic oscillators. For details
on this point we refer to Ref. 4.

The most common labelings for the irreps of SO (2#) are
the Dynkin and Gelfand—Zetlin labelings. It is a rather
straightforward exercise to determine the labels of an irrep of
SO(2n) with lowest weight state |2} by studying its U(n)
content. Here we shall simply give the Dynkin and Gelfand-
Zetlin labels of an irrep of SO(2n) in terms of the U(n)
Young tableaux labels of the corresponding lowest weight
state |(2). We denote the Young tableaux (YT) for the irre-
ducible representations of U(n) as [/,,/,,...,/, ] yr, where [,
denotes the number of boxes in the ith row of the corre-
sponding tableaux. The Gelfand-Zetlin (GZ) and Dynkin
(D) labels of the irreps of SO(2n) will be denoted as

(2.11)

TABLE I The U(#) Young tableau label of a lowest weight state |2} and
the Gelfand—Zetlin and Dynkin labels of the corresponding irreducible rep-
resentation of SO(2#n) for even n = 2k. Note that f=2p + ¢.

TABLE I The U(n) Young tableau label of a lowest weight state |2) and
the Gelfand-Zetlin and Dynkin labels of the corresponding irreducible rep-
resentation of SO(2n) for odd n = 2k + 1. Note that f=2p + &.

U(n) Young tableau
of the lowest weight
state |2)

[l|,12,13,---yln ]YT

Gelfand-Zetlin

labeling of the Lo L L - i)
irrep of SO(2n) 2 2 2 2/az
Dynkin labeling of ( 11 !

the irrep of SO(2#) not T et T e

b=l f—h =Ll —b)p

(ryryely gz and (ny,n,,...,1, ), respectively. In Table I
we give the Gelfand—Zetlin and Dynkin labeling of the irreps
of SO(2n) for even n = 2k corresponding to given lowest
weight states with U(n) Young tableaux [/,,...,/, ]yr. Table
II gives the corresponding labeling in the case of SO(2n) for
oddn=2k + 1.

To every lowest weight state {Q) of an irrep of SO(2n)
there corresponds a highest weight state |HWS), which is
annihilated by the operators 4 #* belonging to the L + space
and transforms irreducibly under U(#n). If we denote the
U(n) Young tableau of a lowest weight state |Q) as
(I;,h59 41, )y, then the U(n) Young tableau of the corre-
sponding highest weight state |HWS) is given as follows:

IHWS>—' [f— Imf_ ln—l""xf_ ll]YTy

for even n = 2k, (2.12a)
and
|HWS> - [f— ln’f_ ln— 1""f_ IZ’II]YT9

for n=2k+1, (2.12b)

where f = 2p + £is the total number of fermionic oscillators.
In Table ITI we give the Gelfand—Zetlin and Dynkin labels of
an irrep of SO(2n) corresponding to a given highest weight
state |HWS),

By the oscillator method outlined above one can con-
struct all the irreps of SO(2#), spinorial as well as tensorial.

TABLE III. The U(#n) label of a highest weight state and the Gelfand—
Zetlin and Dynkin labels of the corresponding irrep of SO(21) for arbitrary
n. Note that f=2p + €.

U(n) Young tableau
of the lowest weight
state |Q2)

[holsyeeody Tyr

Gelfand—Zetlin

U(n) Young tableaux
label of the highest
weight state |[HWS)

[kikzsrokn 1 vr

Gelfand-Zetlin

labeling of the (% — 1,,;% =1l ,...,% - 1:) label of the (k, — —[‘,kz - L,---,k,, ~ L)

irrep of SO(2n) oz irrep of SO(2n) 22 2/oz

Dynkin labeling of (/1 — sl 2 — L y5eesy Dynkin label of k, — ko ky — kyyook k,.k k

the irrep of SO(2n) L—bL,f—1,~bL)p the irrep of SO(2n) K = koks = Koy s = koK1 0 =P
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[ Therefore, strictly speaking, we should be talking about
Spin(2n). Since at the Lie algebra level there is no distinc-
tion, we shall continue using the notation SO(2n).] If we
have an odd number f=2p + 1 (i.e., € = 1) of families of
fermionic oscillators, we obtain spinorial irreps of SO(2n) in
general. This is most obvious from the Gelfand-Zetlin label-
ing given above. For example, for f=1 (i.e, p=0 and
£ =1) one obtains the two irreducible spinor representa-
tions of SO(2n) (see Refs. 4 and 6).

To make our conventions for the various labeling
clearer we give in Tables IV and V the decompositions of
some of the lower-dimensional irreps of SO(8) and SO(10).

lll. UNITARY HIGHEST (LOWEST) WEIGHT
REPRESENTATIONS OF Sp(2m,R)

Before giving the general construction of the unitary
highest weight representations of OSp(2rn/2m,R) we shall
review the oscillator construction of the unitary highest
weight representations of Sp(2m,R) (see Refs. 1,4,and 13).

TABLE IV. Some of the lower-dimensional irreducible representations of
SO(8).

TABLE V. Some of the lower-dimensional irreducible representations of
SO(10).

Young tableaux
Number of of lowest
oscillators weight vector SO(10)g2 SO(10), Dimension
f=1 [0) (RRWEE! (0,00,1,0) 16
=y 3440 (00,001) 16
f=2 |0) (LLLL—1)  (00020) 126
|O) (1,1,1,1,0) (0,0,0,1,1) 210
|E, ) (1,1,1,0,0) (0,0,1,00) 120

IE ) (1,1,0,0,0) (0,1,0,00) 45
| E ) (1,0,0,0,0) (1,0,0,0,0) 10
IHy (0,0,0,0,0) (0,0,000) 1

(11 (1,1,1,L,1) (0,00,0.2) 126

Young tableaux
Number of of lowest
oscillators  weight vector SO(8)gz SO(8)p Dimension
f=1 |0) 444 (0001) 8,
(=Y L —1) (00,10) 8,
f=2 |0) (LLL1)  (0002) 35
(=) (1,L1,0)  (0,0,1,1) 56,
}B ) (,1,00)  (0,1,00) 28
l@ ) (1,00,0)  (1,000) 8,
IE ) (0,000) (0,000) 1

(13) (1,1,1, = 1) (0,02,0) 35,
f=3 0) (333) (0,0,0,3) 112,
[w)) EXER)) 00,1,2) 224,
IB ) Gabd 0,1,0,1) 160,
IB ) Gbd) (1,00,1) 56,
IE ) (444) (00,0,1) 8,
Tamp) Gy -3 (002,1) 224,
IEP ) (33 —1 (01,10) 160,
| ﬁj ) Gih—1 (1010 56,
IE] ) (b4 —4) (00,100 8,
1) (333 —3 (0030 112,
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The highest weight representations of Sp(2m,R) are related
by a simple involution to the lowest weight representations.
For the oscillator construction the term “lowest weight rep-
resentations” is more appropriate, since the generator for
Sp(2m,R) whose spectrum is bounded (from below) is es-
sentially the number operator of the bosonic oscillators.

The noncompact group Sp(2m,R) has a Jordan decom-
position with respect to its maximal compact subgroup
U(m).Its Lie algebra L can be decomposed as a vector space
direct sum:

L=L ,eLoLl, =S;0ljeS", (3.1)
where 4, j=1,...m and ]‘ are the generators of the U(m)
subgroup. The nonvanishing commutators of Sp(2m,R) in
the above basis are*!3

[S;

S =8TF+ 8+ 8 +8IF,
[1i,84]=6/S"+8S*, 32)
[Ij,Sk,] = —525}1 "55Sjk ) '
[ZiIF]=6/:—681F.

The generators of Sp(2m,R) can be realized as bilinears of
an arbitrary number f=2p + ¢ (p =0,1,2,...,, €¢=0,1) of
bosonic oscillators transforming in the fundamental repre-
sentation of U(m):

S; = a;b; + a;b; + ecic;
SV =a"V + a*b’ + ec’d,
Ij=a"a, +byb' + (e/2)(c'c; + ¢,c') ,

(3.3)

where a,b; represents thesum 27_ , q,(r)b;(7), etc. The bo-
sonic oscillators satisfy the canonical commutation relations
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[a:(N.d(s)] = [b;(r),b/(s5)] =85, ,

[ci ’CI] = 6{ 3

[ai(r),a;(s)] = [a;(r),b;(s)] = [a;(r),c;] =0

[a:(M,bI(5)] = [a:(r),d] = [b:i(N,F] =0,

[cisc;] = [b:(r),b;(s)] = [¢sb; (1) ] =0,
where r = 1,2,...,p, i, j = 1,2,...,m. The bosonic annihilation
(a;(r),b;(r),c;) and creation operators (a'(7),b ‘(r),c’) trans-
form covariantly and contravariantly, respectively, under
the U(m) subgroup generated by 7 J‘

Every unitary lowest weight representation of
Sp(2m,R) can be constructed over the Fock space of these
bosonic oscillators as follows. One considers a set of states
|€2) in Fock space transforming in a definite representation
of U(m) and annihilated by all the operators S; belonging to
the L_ | space. Then acting on |§)) repeatedly by the opera-
tors S ¥ belonging to the L, , space one generates an infinite
set of states that form the basis of a unitary lowest weight
representation of Sp(2m,R). If the lowest weight state |{2)
transforms irreducibly under U (), then the corresponding
unitary representation of Sp(2m,R) is also irreducible. The
unitary lowest weight irreducible representations of
Sp(2m,R) can therefore be uniquely labeled by the U(m)
labels of their lowest weight states."*'* If we have one set of
bosonic oscillators, i.e., p = 0 and £ = 1, then in the corre-
sponding Fock space there are only two nonequivalent irre-
ducible lowest weight states, namely, the Fock vacuum

|0) (3.5a)

(3.4)

and the one-particle state
c'loy . (3.5b)

On the other hand, if we have two sets of oscillators (p = 1
and £ = 0), then the possible irreducible lowest weight states
are states of the form

a'a---a*|0), (3.62)

which correspond to symmetric tensors of arbitrary rank of
U(m), and the antisymmetric tensor state

(a'b’— &b ")|0) . (3.6b)
One can construct lowest weight states of the form (3.6a)
using b-type oscillators only. However, they are all equiva-
lent to the ones given above. If we have p pairs of the bosonic
oscillators, then the possible lowest weight states are those
that can be obtained by tensoring p copies of the states of the
form (3.6a) and (3.6b). For an odd number f=2p + 1 of
oscillators the possible lowest weight states will be given by
tensoring the states of the form (3.5a) and (3.5b) with p
copies of the states of the form (3.6a) and (3.6b). We shall
denote the U(m) = SU(m) X U(1) transformation proper-
ties of the lowest weight states |Q1) by their U(m) Young
tableaux and their U(1) quantum numbers, whose gener-
ator is

QB = I: = ai'a,' + bi'bi+ (5/2)(cici + cici) ’
5 = a"a, + bb, + &c’c, + 1 fm,
Op =Ny + %fm »

(3.6¢c)
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where N is the number operator of all the f= 2p + ¢ bo-
sonic oscillators. Since the bosonic creation operators all
commute with each other, the Young tableaux of the lowest
weight states |2) can have at most f= 2p + £ rows. By
choosing f large enough one can construct a lowest weight
state |2) that transforms in any given representation of
SU(m) and has a definite U(1) quantum number that de-
pends on f (see Refs. 4 and 13). The operators S ¢ belonging
to the L, space transform in the symmetric tensor repre-
sentation of U(m) with Young tableau (1] . Since they
commute with each other, the higher powers of S¥ corre-

spond to symmetric tensor products of the representation
11 of U(m):

S=[, S"S"':B} o[ T 11, - 3.7
Thus to calculate the full U(m) content of a unitary lowest
weight representation one needs to tensor the symmetric
powers of the representation [T] of U(m) with the irrep of
U(m) corresponding to the lowest weight state |2). In de-
composing the tensor products into irreducible representa-
tions of U(m) one has to keep in mind that the allowed
irreps have at most f = 2p + £ rows in their Young tableaux.
For details on this point we refer to Ref. 4.

As an example, consider the case whenp =0Oande = 1,
i.e., when we have one set of bosonic oscillators ¢; and c¢'.
Then as stated above there exist only two states in the Fock
space that are annihilated by the operators S; = c,c; and
that transform irreducibly under the U(m) generated by
I =}(c'c; + ¢;c). These are the Fock vacuum |0) and the

one-particle state c* |0):
S;cK|0) =0, Iick|0) =8%0) + 18ic*|0) .

The unitary representation of Sp(2m,R) with lowest weight
vector |0) and f'= 1 has the following U(m) content (indi-
cated by Young tableaux):

0y=1, with @, =m/2,
S0y =,
§8410) = 011
: f (3.9)
§--8410) = (IT—1T 1)
N v/ N~

n times 2n boxes

Similarly the unitary representation with the lowest weight
vector c* |0) has the following U(m) content:

CkIO)zD y
Sick|0y =~ I ,
: : (3.10)
S9.--8%4ck|0) = (TT -1
N N
n times (2n + 1) boxes

These two unitary lowest weight representations are the sin-
gleton representations of Sp(2m,R) (see Ref. 4). Form = 2,
they give us the singleton representations of the covering
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group Sp(4,R) of the four-dimensional anti-de Sitter group
SO(3,2), which were first discovered by Dirac.!”

V. UNITARY HIGHEST (LOWEST) WEIGHT
REPRESENTATIONS OF THE NONCOMPACT
SUPERGROUP OSp{2n/2m,RA)

The noncompact supergroup OSp(2n/2m,R) has a Jor-
dan structure with respect to its maximal compact subsuper-
group U(m/n). The even subgroup U(m) X U(n) of U(m/
n) is simply the subgroup with respect to which the even
subgroup O(2n) X Sp(2m,R) has a Jordan decomposition.
The Lie superalgebra of OSp(2n/2m,R) can be realized as
bilinears of superoscillators transforming in the fundamen-
tal representation of U(m/n) (see Refs. 2 and 4). These
superoscillators are defined as follows:

o) ) e
§4(r)= a#(r) s Nalr) = (1) y Ca= ¢” >

‘0=(Gi) =) ¢=()
§4(n (a#(r) s M) w(ry)’ 4 )
4.1
where A4,B,... = 1,2,...,m + n. The first m components of
these superoscillators are bosonic and the remaining #» com-
ponents are fermionic. Superannihilation (and supercrea-
tion) operators &,,7,4,, (and £4,7%,( ) transform in the
covariant (and contravariant) fundamental representation
of U(m/n), respectively. They satisfy the supercommuta-
tion relations
[E4(NEP} = [n4(N7°() } = 836, ,
[gA Ne B} = ‘Sﬁ ’
[64(MN.Es()} = [14(N13 (9D} = [$4:6} =0,
[§4(r)mp (9} = [§4(Ns} = (74 (r.$3} =0,
[§A ("),775(5)} = [§A (r),gB} = [77A (r)’gB} =0,
(4.2)
where the superbracket [ , } represents an anticommutator
among two fermionic indices and a commutator, otherwise.

The operators corresponding to the Jordan decomposition
of the Lie superalgebra OSp(2n/2m,R),

OSp(2n/2m,R) =S, oM26S**~L_,eL,oL,,,

have the following realization as bilinears of an arbitrary
number f'= 2p + ¢ of superoscillators™*:

Sap =845 +MyEp +E040n
O R R R R
M'; — gA.gB + ( _ l)degAdegB,r'B.,nA
+ (8/2)[§A§B + ( _ l)degAdegBé-Bé-A] ,

where deg 4 = Oor 1 depending on whether A is a bosonic or
a fermionic index, respectively. By restricting the superin-
dices to the purely bosonic or purely fermionic indices we
recover the Lie algebras of Sp(2m,R) and SO(2n), respec-
tively:

(Mi=1Ii, S, S")yoSp(2m,R) ,
(M%, S,, =4, S*=A4")-S0(2n).

The odd generators of OSp(2r/2m,R) are those bilinears
that carry one bosonic and one fermionic index, i.e.,

(4.3)

(4.4)

uyvs
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M, .M*%S,, .S * Their anticommutators close into the even

generators:

{8,y =86M, —8M),,

M, M} =86M; +5.M;, (4.5)
{S,..M,} = —8S,,,

{5,..M}=6.S; .

The other nonvanishing anticommutators can be obtained
from these by Hermitian conjugation. Furthermore, the
commutators of the even generators with odd generators are

[MjM[]=6M, ,
(M) = — o,
[M;’Sku] = —625}# ’
[MiS5] = gks,
[MiMG]= —&5M%,
[MoML] =M,
[Mﬁ’Su] = — &S,
[MASH] = sish,
[Sy M1 =68S, + &S,
[S,-]-,Sk“] = 5:‘Mj‘ + 5;‘Mf‘ ,
[SusMi] = — 88 + 8.8,

[S,..5] =8:M*% — 8 M* .

v

(4.6)

The other nonvanishing commutators between odd and even
generators can be obtained from these again by Hermitian
conjugation.

The unitary highest weight representations of noncom-
pact supergroups are related to the unitary lowest weight
representations by a simple involution. For reasons ex-
plained above we shall use the term “unitary lowest weight”
representations below.

To construct unitary lowest weight representations of
OSp(2n/2m,R) in the super Fock space of all the superoscil-
lators one considers a set of states |()) that are annihilated by
all the operators S, belonging to the L _, space and that
transform in a definite representation of the maximal com-
pact subsupergroup U(m/n). Then acting on |Q) repeated-
ly by the operators $*? belonging to the L, , space one gen-
erates an infinite set of states in the super Fock space that
forms the basis of a unitary lowest weight representation of
OSp(2n/2m,R) (see Refs. 2 and 4). This unitary represen-
tation is irreducible if the corresponding lowest weight state
| Q) transforms irreducibly under the maximal compact sub-
supergroup U(m/n) (see Refs. 2 and 4). The irreducible
representations of U(m/n) that occur in this construction
can be conveniently labeled by supertableaux.'® For exam-
ple, the operators S*% of the L, space transform as the
supersymmetric tensor of rank 2 under U(m/n), whose su-
pertableau is simply /1] . Under the even subgroup
U(m) XU(n) the representation 1] of U(m/n) decom-
poses as

M =(@,H+@m+a,H). 4.7)
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The states that occur in the super Fock space fall into irreps
of U(m/n). The supertableaux of these irreps can have at
most f= 2p + £ rows. To calculate the full U(m/n) content
of a unitary lowest weight representation of OSp(2n/2m,R)
one needs to tensor the supertableau of |2) with the super-
symmetrized powers of the representation T7 of U(m/n),
since

S~ 7,

SESP= (D ® I )s = %e , (4.8)
S48..§P ~( Me---eld)

k times k times )
If we have only one set of superoscillators (i.e., p =0 and
€ = 1), then the only possible irreducible lowest weight vec-
tors of OSp(2n/2m,R) are the vacuum
|0) (4.92)
and the one-particle state

coy=01a. (4.9b)

For two sets of superoscillators (p = 1 and £ = 0) the possi-
ble irreducible lowest weight vectors are

10),
£410) =2,
£t =a, (4.10a)
E4EP10) T
and the states
" —rEM0 = (4.10b)

For 2p sets of superoscillators the possible lowest weight
states can all be obtained by tensoring p copies of the lowest
weight states of the form (4.10a) and (4.10b). To obtain all
the possible lowest weight vectors for f= 2p + 1 we need to
tensor p copies of the states of the form (4.10a) and (4.10b)
with the states (4.9a) and (4.9b). For the rules concerning
the decomposition of the tensor product of the correspond-
ing supertableaux into irreducible supertableaux of U(m/n)
we refer the reader to Refs. 2, 3, 4, and 18. To obtain lowest
weight states |2) of irreducible representations of OSp(2n/
2m,R) we must project out the irreducible representations of
U(m/n) from the above set of states. In most physical appli-
cations it turns out to be more useful to decompose the uni-
tary irreducible representations of a noncompact super-
group into irreducible representations of its even subgroup.
The infinite set of irreps of U(m/n) that occur in a given
irreducible unitary highest weight representation of
OSp(2n/2m,R) can be combined into a finite set of
irreducible representations of its even subgroup
Sp(2m,R) XSO(2n). For the short supermultiplets of the
supergroup OSp(8/4,R) this has been done in Ref. 4. Here
we shall extend these results to general 7 and m.

The unitary irreps of Sp(2m,R) that occur in a unitary
lowest weight representation of OSp(2n/2m,R) are all of
the lowest weight type. Therefore to decompose a unitary
lowest weight irrep of OSp(2n/2m,R) into irreps of
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SO(2n) XSp(2m,R) is equivalent to identifying all the
states obtained by the repeated action of S *®on |} that are
lowest weight vectors of both SO(2n) and Sp(2m,R) simul-
taneously. Then from these simultaneous lowest weight vec-
tors of SO(2n) and Sp(2m,R) we can read off the full
SO(2n) XSp(2m,R) content of the unitary lowest weight
irrep of OSp(2n/2m,R). Clearly the lowest weight vector
|©2) of OSp(2n/2m,R) is a simultaneous lowest weight vec-
tor of both SO(2n) and Sp(2m,R). The other simultaneous
lowest weight vectors of SO(27) and Sp(2m,R) can be ob-
tained from |Q) by the action of the odd generators corre-
sponding to supersymmetry transformations. More specifi-
cally, the relevant operators are the odd generators S
belonging to the L, , space. The operators $* transform in
the (m,n) representation of the U(m) X U(n) subgroup of
Sp(2m,R) XSO(2n) with Young tableau ([3,00). Since
{S*#,5"} =0, the product of the operators S * transform in
antisymmetrized powers of ([1,00), i.e.,

S*~(O0), under U(m)XU(n),
s"ﬂs""z(D:l,B)+(H’m)'
Si#SJVSkP::(D:D ,E )+(B3, B])+(E, EED),

(4.10c)
Skl (D,D):n isymmetrized
k copies ty t

Clearly all the U(m) and U(#) tableaux with more than m
and n rows, respectively, vanish. Furthermore, if the number
JS=2p + ¢ of the superoscillators is less than m or #, then the
states whose U (m) or U(n) tableaux have more than frows
or f columns, respectively, do not occur in the super Fock
space. The lowest weight vectors of Sp(2m,R) XSO(2n)
will be a tensor product of the lowest weight vectors of
Sp(2m,R) and SO(2n), which were discussed in Secs. III
and II, respectively. Therefore any state of this tensor prod-
uct form created by the repeated action of S * on the lowest
weight state |Q) will be a lowest weight state of
Sp(2m,R) XSO(2n). To identify these states simply one
needs to tensor the Young tableaux of the lowest weight state
|2} with the antisymmetrized powers of (O0,00). Let us now
illustrate this with examples. Consider the simplest case of
f=1(i.e.,,p=0and ¢ = 1). Then there exist only two low-
est weight states transforming irreducibly under the maxi-
mal compact subsupergroup U (/m/n), namely, the vacuum
state |0) and the one particle state {* |0). Consider now the
unitary representation with lowest weight vector |0). By the
rules stated above there are only two states that are lowest
weight vectors of Sp(2m,R) XSO(2n) inside this irrep of
OSp(2n/2m,R). They are

|0) = (1,1), under U(m)xXU(n),

S#0) = ¢'»|0) = (3,0), under U(m)XU(n).
All the other states inside the unitary representation of
OSp(2n/2m,R) correspond to “excitations” of these states

by the action of the operators belonging to the L, ; space of
SO(2n) and Sp(2m,R). By the results of Secs. I and I1I we
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TABLE VI. The Sp(2m,R) XSO(2n) content of the unitary irrep of OSp(2n/2m,R) with lowest weight vector |0) for even #n = 2k and f= 1.

Lowest weight U(m) labels of the lowest Gelfand-Zetlin and

vector of weight vector of the Dynkin labels of

Sp(2m,R) X SO(2n) irrep of Sp(2m,R) the irrep of SO(2n)

|0) (0,....0)yr; Qp =m/2 Gheddaz = (0,00,...,1)p
S*|0) = (0,0) (1,0,....00yg; Qg =m/2+1 ek — Dz = (0,0,..,1,0)

can read off the Sp(2m,R) XSO(2n) content of these uni-
tary lowest weight representations of OSp(2n/2m,R). They
are given in Tables VI and VII for even and odd n, respec-
tively.

The unitary representation of OSp(2n/2m,R) with the
lowest weight vector £#|0) has lowest weight vectors of
Sp(2m,R) XSO(2n), namely, ¢|0)=(0O,1) and
7*10) = (1,0). The corresponding Sp(2m,R) X SO(2n) la-
bels of these lowest weight vectors are given in Tables VIII
and IX. The supermultiplets of OSp(2n/2m,R) for f = 1 are
the singleton supermultiplets and agree with those obtained
for OSp(8/4,R) (see Ref. 4) and OSp(2n/2,R) (seeRef. 6).
The singleton supermultiplets are the shortest supermulti-
plets of OSp(2n/2m,R) and involve the two spinor represen-
tations of SO(2#n). Note that the two spinor representations
of SO(2n) get interchanged in going from the singleton su-
permultiplet with lowest weight vector |0) to that with low-
est weight vector £ |0).

Let us next consider the unitary lowest weight represen-
tation of OSp(2n/2m,R) with lowest weight vector |0) and
f=2 (i.e,, p=1 and £ = 0). In this case, possible lowest

weight states of Sp(2m,R)XSO(2n) have the
U(m) X U(n) Young tableaux
(0,0)=|0),
(00,
(m.H + H o,
(O ,B),
(13, E )
(1Tr—/—1., nboxes) .
—— } (4.11)

nboxes

In Table X we give the full Sp(2m,R) X SO(2n) content
of this unitary representation of OSp(2n/2m,R).

For = 2, any state of the form £ £ 2+ - £ €|0) is a low-
est weight vector of OSp(2n/2m,R). Such states transform
irreducibly under the maximal compact subsupergroup
U(m/n). They correspond to the supersymmetric tensor
representations of U(m/n) with supertableaux T7T--—17.
In addition, we have the lowest weight vector

[£*9" — 9”10}, (4.12)
which also transforms in an irreducible representation of
U(m/n) with supertableau E These lowest weight vectors
of OSp(2n/2m,R) can be decomposed into irreducible low-
est weight vectors of Sp(2m,R ) X SO(2n) simply by decom-
posing the supertableaux of U(m/n) into irreps of its even
subgroup U(m) X U(n). For example, we have

U(m/n)DU(m) X U(n) ,

D= (G0 + (1,0),

E=(B 1+ (00 + (1, 1),
m = ([, + @O0+, H),
W= (OL—-0,1)

N~ N —

k k

k-1 (4.13)

For k> n those Young tableaux of U(#) on the right-hand
side containing more than # boxes vanish. For further details
on the decomposition of supertableaux we refer to Refs. 4
and 18. In addition to the lowest weight vectors of
Sp(2m,R) XSO(2n) contained in the lowest weight vector
of OSp(2n/2m,R), there are others created by the action of
the odd supersymmetry generators S* within a unitary rep-
resentation of OSp(2n/2m,R). In Table XI we give the
Sp(2m,R) X SO(2n) content of the irrep of OSp(2n/2m,R)

TABLE VII. Sp(2m,R) X SO(2n) content of the unitary irrep of OSp(2n/2m,R) with lowest weight vectors |0) forodd n =2k + 1 and f= 1.

Lowest weight

U(m) labels of the lowest

Gelfand-Zetlin and

vector of weight vector of the Dynkin labels of

Sp(2m,R) XSO(2n) irrep of Sp(2m,R) the irrep of SO(2n)

|0) (05 s Myr; QB =m/2 (%yi)"‘) - %)GZ = (0,0,...,1,0)p

S*|0) =(0O,0) (1,0,....0)yx; @ =m/2 41 3hod 6z = (0,0,...,0,1)
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TABLE VIII. Sp(2m,R) XSO(2n) content of the unitary irrep of OSp(21/2m,R) with lowest weight vector {# |0) for even n = 2k and f'= 1.

Lowest weight
vector of
Sp(2m,R) XSO(2n)

U(m) labels of the lowest
weight vector of the
irrep of Sp(2m,R)

Gelfand-Zetlin and
Dynkin labels of
the irrep of SO(2n)

0y =(0O,1)

7#10) = (1,0)

(1,0,.,.0)yr; Gp =m/2 + 1

(0,0,0,...0)yr; Qg =m/2

heddgz = (0,0,...,0,1)p

(i’i'"" - ir)GZ = (0,0,.--,1,0)D

TABLE IX. Sp(2m,R) X SO(2n) content of the unitary irrep of OSp(2n/2m,R) with lowest weight vector £4{0) =[] forodd n =2k + 1 and f= 1.

Lowest weight
vector of
Sp(2m,R) XSO(2n)

U{(m) labels of the lowest
weight vector of the
irrep of Sp(2m,R)

Gelfand-Zetlin and
Dynkin labels of
the irrep of SO(2n)

0y =(0,1)

y#0) = (1,0)

(1,0,...0)yr; Qs =m/2+1

0,0,....0)yr; Qg =m/2+1

(%,i,m,i, - i)GZ = (070’---r1’0)n

o)z = (0,0,...,0,1)p

TABLE X. The Sp(2m,R) X SO(2n) decomposition of the unitary representation of OSp(2n/2m,R) with lowest weight vector |0) and f'=2.

U(m)XU(n) Young

tableaux of the
lowest weight U(m) labels of the lowest Gelfand—Zetlin and
vectors of weight vector of the Dynkin labels of
Sp(2m,R) XSO(2n) irrep of Sp(2m,R) the irrep of SO(2n)
(0,0)yr 0,0,....0)yr; Qg =m (L1,...,1)gz = (0,0,..,0,2),, forevenn
(L1,..,1, = Dgz = (0,0,...,0,2,0),, foroddn

(0,0) (L,0,....0)y1; @g=m+1 (1,1,...,1,0)gz = (0,0,...,0,1,1),, foralln
([T, k boxes) ,

N——— k zeros

o,
k boxes (k0,0..0)yr; Qs =m+k (1,1,..,1,0,...,0) gz = (0,0,...,0,1,0,....0)p,
e

k zeros

TABLE XI. The Sp(2m,R) X SO(2n) content of the unitary irrep of OSp(2n/2m,R) with lowest weight vector (£ *n® — n7£ #)|0) and f=2.

U(m) Xu(n) Young
tableaux of the
lowest weight

vector of

Sp(2m,R) XSO(2n)

U(m) labels of the lowest
weight vector of the
irrep of Sp(2m,R)

Gelfand-Zetlin and
Dynkin labels of
the irrep of SO(2n)

(H,l)
(0,0)

(L,

(‘:D’B)

3<ksn

,~/k\—-\
O, i,

(L,1,0,...0)yr; Qp=m+2

(1,0,..0)yr; @g=m+1

(0,0,....0)yy; @Qp=m

(2,0,....0)y7; @p=m+2

(k00,...0)yr; @g=m+k

(L,1,...,1) gz = (0,0,...,0,2), forevenn
(L,1,...,, — DNgz = (0,0,...,0,2,0)p, foroddn

(1,1,..,1,0); = (0,0,...,0,1,1),, foralln

(L1,..,1, — gz =(0,...,0,2,0),, forevenn
(L,1,...,1,1)g, = (00,...,0,2),, foroddn

(L,1,..,1,0,0)5; = (0,0,..,0,1,0,0)

k

-
(1,1,..,1,0,..,.0)gz = (0,..,0,1,0,...,0)

k
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with lowest weight vector given in (4.12) whose supertab-
leau is E .

It is interesting to compare the unitary irreps of OSp(8/
4,R) whose lowest weight vectors are |0) and
(&"n® — n*£B)|0). As stated above, Sp(4,R) is the cover-
ing group of the anti-de Sitter group in four space-time di-
mensions. Following Ref. 4 we shall label its lowest weight
irreps by the spin S (SU(2)) and anti-de Sitter energy
E, = Q5/2(U(1)). Then the contents of these two irreps of
OSp(8/4,R) are as follows.

1) = [0):

S E, SO(8)

0 1 (0002)p
0 2 (0020),
3 3 (001D,
1 2 (0,1,00)p
i 3 (1,00,0)p
2 3 (0,000 .
|0) = (§*n" — 7*£ ) |0):
S E, SO(8)

0 2 (0,002),
0 1 (0020),
} 3 (0,01,0)p
1 2 (0,1,00)p
% 3 (1)090y0)D
2 3 (0,000)p

From the spin and anti-de Sitter energy content of these su-
permultiplets it is clear that they correspond to massless
N = 8 anti-de Sitter supermultiplets.* They only differ in the
SO(8) transformation properties of the S = 0 states with a
given anti-de Sitter energy. Even though they are nonequiva-
lent N = 8 anti-de Sitter supermultiplets, they reduce to the
same massless N = 8 supermultiplet in the Poincaré limit!
This suggests that corresponding to a given Poincaré ex-
tended supergravity theory there may be different, non-
equivalent gauged (anti-de Sitter) supergravity theories.

Before concluding, let us now summarize the general
rules for determining the SO(2#) X Sp(2m,R) content of a
given irreducible unitary lowest weight representation of
OSp(2n/2m,R).

(1) Decompose the lowest weight state | Q) into irredu-
cible representations of the even subgroup U(m) X U(n) of
the maximal compact subsupergroup U(m/n). Each one of
these irreps of U(m) X U(n) is a lowest weight state of an
irrep of SO(2n) XSp(2m,R).

2376 J. Math. Phys., Vol. 29, No. 11, November 1988

(2) By acting on these lowest weight states of
SO(2n) X Sp(2m,R) with the odd supersymmetry genera-
tors S* =~ ([3,0) repeatedly, one generates all the other low-
est weight states of the irreps of SO(2n) XSp(2m,R) that
occur in the irrep of OSp(2n/2m,R) defined by |2). Since
{§*,8"} =0, the higher powers of §#* transform in the
antisymmetrized tensor product of the representation
(3,08) of U(m) X U(n). For a given number f'=2p + £ of
oscillators, the possible lowest weight states of SO(2n) and
Sp(2m,R) were given in Secs. II and III, respectively. Here
it is important to keep in mind that only some of the states
created by the repeated action of S* will be lowest weight
states of SO(2n) X Sp(2m,R). The rest will simply be excita-
tions of these lowest weight states.

(3) The irreducible unitary lowest weight representa-
tions of Sp(2m,R) are uniquely labeled by the U(m) quan-
tum numbers of their lowest weight vectors. Their SO(2n)
transformation properties can be read off from the U(#n)
transformation properties of the corresponding lowest
weight vectors of SO(2n) according to the rules given in Sec.
1L
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Infinitesimal operators of group representations in noncanonical bases
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Explicit expressions are obtained for the action of the infinitesimal operators of some classes of
representations of the groups U(p + ¢), SO(p + ¢), SU(n), Sp(n), SL(n,R), and GL(n,C) in

the bases that differ from the Gel’fand-Zetlin ones.

I. INTRODUCTION

The first expressions for the action of infinitesimal oper-
ators of group representations onto elements of a discrete
basis were the Gel’fand-Zetlin formulas."? The results for
SU(n) were independently proved in Ref. 3. Apparently,
they are the most utilizable results of the representation the-
ory in physics, especially in particle physics, nuclear physics,
and quantum chemistry. Infinitesimal operators of represen-
tations are of great importance for dynamical symmetries.

Considering physical applications of group representa-
tions, we need various bases (corresponding to different sub-
group reductions) of carrier spaces. In this paper we give
explicit expressions for infinitesimal operators of some
classes of representations of the classical Lie groups in the
bases that differ from the Gel’fand-Zetlin ones.

The Gel'fand-Zetlin formulas for the infinitesimal op-
erators of representations of the groups U(n) and SO(n)
correspond to the so-called canonical reductions,

Un)DOUn—~1)D-- 22U,
SO(n)DSO(n—1)D---D80(2).

These reductions are characterized by the unit multiplicity
for irreducible representations of neighboring subgroups.
For noncanonical reductions, multiplicities can exceed 1. It
is well known that to derive explicit formulas in these cases is
a very complicated task. Noncanonical reductions for cer-
tain classes of representations are also characterized by the
unit multiplicities. We deal with reductions and representa-
tions of this type.

Il INFINITESIMAL OPERATORS FOR THE GROUP
U(p+4q) IN A U(p)xU(q) BASIS

We consider the irreducible representations D(M,,M,)
of U(p + ¢) with highest weights (M,,0,M,), M,>0>M,,
where 0 = (0,...,0). The reduction of D(M,,M,) onto the
subgroup U(p) X U(g) decomposes into a sum of the irredu-
cible  representations D,(m,m,)®D,(m;,m;) of
U(p) xU(q) with highest weights (m,,0,m,)(m],0,m}),
m,>0>m,, m; >0>m}, for which*

m+my+mi+my=M + M,
ml—m2+m; ‘-’méng—Mz.

Each of these representations occurs in the decomposition
with the unit multiplicity. The set of elements of the
Gel'fand-Zetlin bases of all representations D, (m,,m,)
® D, (m},m;) forms an orthonormal basis for the represen-
tation D(M,,M,). The basis elements are denoted by
|my,m,,mi,m5;a.B ), where @ and B are the Gel'fand-Zetlin
patterns for the representations D,(m,m,) and
D, (m},m}), respectively, without the first line.

The infinitesimal operators E,,, , and E, , , , of the
representation D(AM,;,M,) are defined by Egs. (9) and (10)
of Ref. 5. The coefficients K ;.. and K ... (a,8) of these equa-
tions are expressed by means of Clebsch-Gordan coeffi-
cients (CGC’s) of the tensor products D, (m,,m;)
@ D,(1,0), D,(m;,;m,) ® D, (0, — 1) of the representations
of U(p) and of similar tensor products for the group U(q)
(see Sec. I in Ref. 5).

Usingin K[ . and K .’ (a,f8) the expressions for CGC’s
from Ref. 3, after some simplifications we obtain that

Ep,p+1lm1,m2,m{,m§;a,ﬁ) = [(MI —my—mi +p)(My—m, —m| —q+ 1)]”2

XKp(ml’mzsnpnz)Kq(m; - lyméyn; )n£)|ml + 1’m2)m; - I,mé ;asﬂ>

+ [(My—m—m}) (M, —m, —m] —p—q+ 1)]"?K,(m,,my,n,,n,)

XK j(m},m; — Lnj,ny)|m, + Lmymi,m; — La,B)

+ [(My—m;—m} + 1) (M, —m,—mi —p—q+2)]'"K;(m,myn,n,)

XK, (m] — 1,my,ni,n3)|m,m, + 1,mj — L,m;;a,B)

+ [(My—my—mj +p— 1)(My,—m, —m; —q)}"*K  (m,,my,n,,n,)

XK;(miymé - 1)”1 ’né)'mlymz + l’m;!mé - 1;"&3)» (1)
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Ep+l,piml’m2!m;’m£;alﬁ> = —[(My—my—m +p+ 1) (M, —m, —m] __’q)]uz
XK, (m; — L,myn,n,) K, (mi,mj,ni,n;) |\ my — 1Lmy,m) + 1L,mj;a,8)
—[(My—m —m] + 1) (M, —m, —m| —p—q+2)]"K,(m, — L,my,n,,n,)
XK o (mi,my,ni,n3)|my — 1,my,mi,m; + La,B)
—[My—m —m)(My—m, —m} —p—q+ 1)]'"?K | (m,m, — Ln,n,)
X K, (m},m5,ni,n5) |\mymy — L,m) + 1L,m};a,B)
~ (M, —my—m} +p)(My—m, —m; —q+1)]"2K, (m,my — 1,n,,n,)

XK ;(m],my,ni,n3) |\m,m, — Lmi,m; + La,B), ' (2)

where n, and n, are defined by the first line (1,,0,n,) of the pattern , a highest weight of a representation of U(# — 1), n, and
n, are defined by the first line of the pattern 3, and

- . . 172
Ks(rl»rbtl’tz) = [ (rl t‘ + 1)(rl t2 +S 1) ] ] (3)
(ri—r+s—UD(r—r+s)
, (t,—r+5—=2)(t, — 1) ]‘/2
Ks(r,r,t,t)=[ . 4)
M (ri—r+s—Dr —r+s-2)

As in the case of Gel’fand—Zetlin formulas, the expressions for the infinitesimal operators E,,, E,,, r<p < t, are obtained by
making commutationof E,, , , and E, , , , with the infinitesimal operators for the subgroups U(p) and U(qg). They also can
be obtained® with the help of CGC’s of Ref. 3.

The expressions (3) and (4) define infinitesimal operators of the representations 7(4,,4,) of the group U(p,q) in Ref. 4.

1. INFINITESIMAL OPERATORS FOR THE GROUP SO( p+4q) IN AN SO( p) x SO(q) BASIS

We consider the irreducible representations D(M) of SO(p + ¢) with highest weights (M,0), M>0. The reduction of
D(M) onto the subgroup SO(p) X SO(g) decomposes into a sum of the irreducible representations of SO(p) X SO(g) with
highest weights (m,0) (m',0), m>0, m'>0, for which m + m’ and M are of the same evenness and

m+m'<M, if ppg>2, m+m'<sM, m—m'<M, if p>g=2.

The decomposition is free of multiplicities. A basis of the carrier space of D(M) consists of the Gelfand—Zetlin bases of the
representations D, (m) ® D, (m'). As in the case of U(p + g), the basis elements are denoted by |m,m’;a,8).

The infinitesimal operatorsJ,,,, , = E,,, ; — E, , , , of the representation D(M) are defined by Eq. (8.19) of Ref. 7. As
in the case of U(p + gq), the coefficients K., and K ... («,8) of this equation are expressed by means of CGC’s of the tensor
products D,(m) ® D,(1) and D, (m') ® D, (1). We find these CGC’s from Eqgs. (4.24)-(4.27) of Ref. 7:

(mi
n 0O

Using these expressions and formulas for dimensions of representations of SO(n), we obtain, for p>q> 2,

)—_-[(m—%-rhl—p—Z)(m—rH-1)]”’2 (m 1
(m+1)2m+p—2) n 0

m—-l)=[(m+n+p-—3)(m+n) ]"2

n n (m+n-3)2m+p—2)

Jp.p+ 1 lm,m’a,B)
=[(M—m—m)YM+m+m' +p+q—2)]""K,(mnm)K,(m'.n")|m + 1L,m’ + L,a,8)
+(M—m+m +q—2Y(M+m—m'+p)1'"?K,(mn)K,(m’' — Ln')|m+ 1L,m" — L;a,B)
—[M—m4+m+)(M+m—m'+p—2)1"?K,(m— L,n)K,(m',n')|m — 1,m’' + L,a,B)
—_[M—m—m +2)M+m+m +p+q—-4)]”2Kp(m —1L,m)K,(m' — 1L,n")|m — 1,m' — La,B), (5

where n and #n’ are defined by the first lines (n,0) and (#',0) of the patterns a and f3, and

(6)

Ky = [ CHLEs= D=1

2r4+s5—2)2r+s)
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If p> g =2, we have |m,m";a), m>0, — o <m’ < w0, instead of |m,m";a,f ) and J, ,, | has the form
Jopirlmmia) =[(M—m—m'y(M+m+m' +p)]'°K, (mpn)|m+ Lm' + La)
+[(M—m+m)(M+m—m' +p)]'*K,(mn)|m+ 1,m' — La)

—[((M=m+m +2)(M+m—m' +p—2)]"2K,(m~ Ln)|m — 1,m" + L;a)

~ M —m—m'+2)(M+m+m' +p—2)]"2K,(m— 1,n)|m — |,m’" — La), (M

where K, (m,n) is given by Eq. (6).

The expressions for the infinitesimal operators J,, = E_,

— E,;, s<p <t, are obtained by making commutation of J,, , , ,

with the infinitesimal operators for the subgroups SO(p) and SO(g).
By means of Eq. (6) we can obtain infinitesimal operators of the representations 7, , A€C, of the most degenerate series of

SO(p,q) (see Sec. 5 of Chap. 8 in Ref. 7).

IV. INFINITESIMAL OPERATORS FOR THE GROUP
SU(n) IN AN SO(n) BASIS

We consider the irreducible representations D(M,0) of
SU(n) with highest weights (M,0). The reduction of
D(M,0) onto the subgroup SO(#) decomposes into a sum of
the irreducible representations D(m) of SO(n) with highest
weights (m,0), for which m and M are of the same evenness
and 0O<m< M. Multiplicities equal 1. The basis of a carrier
space of D(M,0) consists of the Gel’fand-Zetlin bases of the
representations D(m). The basis elements are denoted by
|m,a), wherea isa GeI’fan_d—Zetlin pattern for D(m) with-
out the highest weight (m,0).

The Lie algebra su(n) of SU(n) decomposes into the
direct sum su(n) = so(n) + p, where so(n) is a Lie algebra

-----------

|

of SO(#n) and the subspace p consists of the linear combina-
tions of the matrices

Jy=V=T(E,+Ep, i<j, (%)
—~2 2 1 &
Jo = (m) (Ekk -+ % Eﬂ) k=12,.,n.
(8b)

The operators ad X: (ad X) Y = [X,Y], Xeso(n), realize on
p the irreducible representation®® of so(n) with highest
weight (2,0). The matrices (8a) and (8b) form the
Gel’'fand-Zetlin basis for this representation. We have the
following one-to-one correspondence:

9

where the first n — j + 1 rows coincide with (2,0) and the following i rows coincide with (1,0).
The infinitesimal operators J;; of the representation D(M,0) of U(n) have the form®®

7n—1 1/2
Jsj[m,a)::( - ) {[(M——m+2)(M+m+n—2)]”2[

X|m—2,a) — [(M—m)(M+m +n)]”2[

m 2 im+2) , — n (m Zm)(m
X(a Ut o Im +2,0) — 1(M+2); 0 0l0/\a

]‘/2 (m Z‘m—Z)(m 2
dim D(m — 2) ; 0 ol o a (Jy)

dim D(m) ]‘/Zz(m 2m+2)
dim D(m + 2)

dim D(m)

m~2)
a'
0 0 O

o) It
) e ""’“>}’

g

(10)

where (J;;) denote the Gel’fand-Zetlin pattern (9) with j — i =s. If s =j = n, the summation over &' reduces to one

2
summand o’ = « and the CGC (. W |™ %) can be written as (r ; "%

m42

), where k is defined by the first row (k,0) of the

pattern a. A product of CGC’s of Eq. (10) can be written down in the form

m 2im+2\fm 2\lm-+42 . nm " n,m
(0 o( o )(k 0; X )=d1mD(miZ)L"_|tao(§)fog(§)tab *2(§)dg,
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where S "~ 'is the sphere SO(n)/SO(n — 1) and ¢ 7 (£) are associated spherical functions of the representation D(m) of the

group SO(7) (see Sec. 9.4 of Ref. 10). We represent 7 g (£) as a product £ ;5(g, (8))t 5o (), where ¢ 5 “*(7), 7eS" ~

an associated spherical function of the representation D, _, (k) of SO(n — 1). The invariant measure d€in (11) has the form
dé = I'(n/2)

VaT((n — 1)/2)
(see Sec. 9.1 in Ref. 10). Therefore, making use of the orthogonality relation for ¢ ;5 L4(n) in (11), we have

sin"~20d@dy

(m 2m+2)( ‘m+2) I'(n/2)dim D(m 4 2) I+ (12)
0o ol o J7T((n — 1)/2)dim D, _ (k)
where
1+ = [ tiple, @) Ble, (0115 g, O))sin" 2 6do.
0
(13)

The functions ¢ 75(g, (8)) are expressed by means of Gegenbauer polynomials C%* *~272(cos 8) (see Sec. 9.4 in Ref. 10),
and

153(8. () = [n/(n — 1)} (cos’ 6 — 1/n).
According to this formula one has

1
I =4| CoPA(OCH A (O~ 1/(2p+ D)1 — 2P+ *=1a,

—1
where p = (n — 2)/2 and
A =2k +1 [F(p+k) ]2(p+ 1) (2p — Diml(m — K)!'(2p + k—2)!1(2p 4+ 2k — 1)
T'(p) 2p+DH2p+m—DI2p+m+k—1)k!
(m+1)(m+2)(m—k+1)(m—-k+2) 12
p+m+k)2p+m+k+D2p+m)2p+m+1)]

Because of the orthogonality relation for Gegenbauer polynomials we obtain

1
I+ =Af [1Co 5 (D] [(Co K a (D] (1 —t2)P =12 gy,

For the product tC?* ¥ (¢) we make use of the recurrence relation
—k+1 2 k—
m—k+1 Cerk (D) + p+mtk—1

2(p+m) 2(p+m)
The same relation is used for the product tC2* % , (#). Taking into account again the orthogonality relation for Gegenbauer
polynomials we have

ICrrE () = Crrk (D).

I+ = Va(p+ DT (p+ 1/2)m!(2p + k —2)Y(2p + 2k — 1)
22+ DT PN 2p+m—Dip+m)(p+m+1)(p+m+2)
><[(er Dm+2Ym—k+1)m—k+2)Qp+m+k)Q2p+m+k+ 1)]‘/2_
(2p+m)2p+m+1)

Thus

(m 2m+2)( ‘m+2)
o ol o
_ P+ DIQp+mQp+m+ D2 +m+k)Qp+m+k+ D(m—k+D(m—k+2)]'?
22p+ D(p+m)(p+m+ D[(m+1)(m+2)]"?

In the same way we obtain that

(m Z)m—Z)(m 2m—2)_(p+1)[m(m—l)(m—k)(m—k—l)(2p+m+k——1)(2p+m+k—2)]”2
kol k /- 22+ D +m)(p+m—D[Q2p+m—1)(2p+m—2)]"?

(m Zm)(m 2m)_p(m—k)(2p+m+k>—k(p+k—1)

0 0l0/\k Olk/™ 22p+D(p+m—D(p+m+1)

2
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Now it follows from Eq. (10) that

n\(n=2Ym-=-kY(im+k+n—=2)—k(Rk+n—-4)
@y = -y —1(M+2 ,
Jon i) ( +2) [2n(n—1D)]'22m+n)2m +n—4) |,

+[(M—m+2)(M+m+n—2)]"?

[n(m —k)Y(m—k—1)(m+k+n—3)(m+k+n—4)]'""?

_2, . M- M 1/2
20— )G n— D Omtn—6) P amsn—a M 2@~ (M =m) Mt m+n)

Intm+k+1)(m+k+n— Dim+k+n—2)(m—k+2)]'?
R(n—1DC2m+n+2)2m+n—2)]"2(2m +n)

|m + 2,a). (14)

The rest of the infinitesimal operators (8a) and (8b) are obtained by making commutation of J,, with the infinitesimal
operators of representations of SO(n).

V. INFINITESIMAL OPERATORS FOR THE GROUPS SL(n,A) IN AN SO(n) BASIS

The results of Sec. IV allow us to obtain the expressions for infinitesimal operators of the representations 7} and 7 of
the most degenerate series® of SL(n,R). The reduction of 7& onto the subgroup SO(#) decomposes into a sum of the
irreducible representations D(m), for which m are even for 7} and odd for 7, . For the group SL(n,R) we have the matrices

2 172 1 &
I,=E, +E, i<j I =(____) (E _1 E) k=121,
ij j+ 'ji <J kk n(n—l) kk nj;] 'if

instead of the matrices (8a) and (8b). They form the Gel’fand—Zetlin basis for the irreducible representation D(2) of SO(n).
Utilizing the results of Refs. 8 and 9, and of Sec. IV, we obtain

i )lma>=(a__n_\(n—Z)(m—k)(m+k+n—2)—k(2k+n—4)
g i 2/ [2n(n—D]1'?Cm+n)(2m +n—4)

Im,a)

[nm—k+1)(m—k+2)(m+k+n—1)(m+k+n—2)]"2

+lo+m) [2(n—1)2m+n+2)(2m +n—2)]1"2(2m +n)

|m + 2,a)

[nm—k)Y(m—k—1)(m+k+n—-3)(m+k+n—4)]"
Rn—1DCm+nr—-2)2m+n—-6)}"*Cm+n—4)

+(c—m—n+2) lm —2,a).

By making commutation of 7 (1, ) with infinitesimal operators for the subgroup SO(n), we derive the other infinitesimal
operators of the representations 7.

VL. INFINITESIMAL OPERATORS FOR THE GROUP Sp(n) IN A U(n) BASIS

We consider the irreducible representation d(M) of Sp(n) with highest weights (M,0), M>0. The reduction of d(M)
onto the subgroup U(n) decomposes into a sum of the irreducible representations D(m,,m,) of U(n) with highest weights
(m,,0,m,), for which m, — m, and M are of the same evenness and m, — m,<M. Multiplicities equal one. The Gel’fand—
Zetlin bases of the representations D(m,,m,) constitute the orthonormal basis for d(M). The basis elements are denoted by
|m,,mya), where o are the Gel’fand—Zetlin patterns for the representation D(m,,m,) without the first row.

The Lie algebra sp(n) of Sp(n) is represented as the sum u(n) + p, where u(n) is the Lie algebra of U(n). The
complexification p, of p forms a carrier space for a sum of two irreducible representations!! D(2,0) and D(0, — 2) of u(n)
with respect to the action ad X,Xeu(n). We take the matrices

‘,+ = i(Erm - E2n,2n) - (En,zn + E2n,n )’ J— = i(Enn - E2n,2n) + (En,Zn + E2n,n)

from p.. They are invariant with respect to the operators ad X, Xeu(n — 1). The matrices J, and J_ belong to the carrier
spaces of D(2,0) and D(0, — 2), respectively.

The infinitesimal operators J, and J_ of the representation d(M) are defined by Eqgs. (29) and (30) of Ref. 11. The
coefficients of these equations are expressed by means of CGC’s of the tensor products D(m,m,) ® D(2,0) and
D(m,;,m,) ® D(0, — 2). Utilizing the expressions for these CGC’s from Ref. 12, after some simplifications, we obtain
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[(my—n,+D)(my —n,+2)(my—n,+n—1)(m, —n, +n)]"?
(mi—my+n)[(my—my+n+1)(my—my+n— 1)]”2

J+ !mbmz;a) =

X[(M—m, +m)(M+m, —m, +2n)1"?*|m, + 2,mua)

[y —my+n=3)(n, —my+ n—2)(n, — my — 1) (n, — my)1'"?
(my—my+n—~2)[(my—my+n—3)(m —my+n—1)]"?

XM+ m, —my+2n—2)(M —m, +m2+2)]”2imlymz+2;a)

4 2{m,—n, + )(my —n,+n—1)(n, —my + n—2)(n, —m,) "2
(m,—m2+n)(m,—m2+n~2)

(M + n)|m, + 1,m, + La),
(15)

[(m,—n,+n—3)Y(my—ny+n—2)(my—n, —1)(m, —n,)]"?

J_immyua) = — 72
(mi—my+n—-2)[(my—my+n—1)(m —my+n-—3)]

X[(M+my—my+2n—2)(M—m, +m2+2)]”2‘m1 —2,mya)

I —my+ Dy —my+ )y —my+n—1)(n, —my+n)]'"?
(m —my+nm)[(my—my+n+1(m —m,+n—1)]"?

X [(M —my + my) (M + my — my +2n)]1'?|m,,m, — Z;a)

2{tny —my+ D) (ny —my+n—D(m, —ny+n—2)(m, —n)1'"?
(mi—my,+ny(m —my+n—2)

(M + n)\m, — 1,m, — Lia).
(16)

The other infinitesimal operators of the representation d (M) can be obtained by making commutation of J, and J_ with
infinitesimal operators for the subgroup U(#).

Equations (15) and (16) define the infinitesimal operators of the most degenerate series representations of the group
Sp(n,R) in a U(n) basis.'!

VIi. INFINITESIMAL OPERATORS FOR THE GROUP GL(n,C) IN A U(n) BASIS

We consider the representations 77, oeC, ge{0, + 1, + 2,...}, of GL(n,C) introduced in Ref. 13. The reduction of 77
onto the subgroup U(n) decomposes into a sum of the irreducible representations D(m,,m,) with highest weights (m,,0,m,),
for which m, + m, = g. The elements of the Gel'fand—Zetlin bases for the representations D{(mm,) are denoted by
I m,,m,,a ).

The infinitesimal operators of the representation 79 are defined by Eq. (25) of Ref. 13. The coefficients of this equation
are expressed by means of CGC’s

K= (D(mnmz) D(1,—-1) D(mi,mé))(l)(mpmz) D(1,-1) ID(mi,mé)) (17

0 0 0 D' (k,k,) D' (k,,ky)
where D’(k,,k,) is an irreducible representation of the subgroup U(n — 1) with highest weight (k,,(),kz), k,>0>k,, and
(m],m;) takes the values (m, + L,m, — 1), (m; — Lm, + 1), (m,m,). The coefficients (17) are evaluated in the same
manner as in the case of the representations of U(n) in an SO(n) basis.
Utilizing the expression (54) of Ref. 14 for the coefficient (17), we obtain the formula analogous to Eq. (12),

K=2(n-1)

dim D(m,,mz)j'

dim D (ki) s (g, (O)) i~ (g, (O))E (b (g, (6))sin®™ =2 6 cos 6 dB. (18)

nm,,

The matrix elements £ {;";:73 (g, (6)) are defined by Eq. (48) of Ref. 14 under appropriate meaning of highest weights. After
laborious evaluations we find that this matrix element is expressed by means of the hypergeometric function ,F,, which, in
turn, is expressed through the Jacobi polynomial P (*® (x). One has
(m, — k)im Wk, +n~—3)!

(ky —m ) m; —ky +n—2)!

(~k +n—3)(k, —my+n—2)I(—m,)!

(—my+n—2)m, +n—2)k!(—k))!

X (sin §)?P (o~ fet n =2kt ke = m) (605 26). (19)

£ (2, (8)) = ( — 1>k-[(n—~2>(k, k4 n—2)

172
] (tan @) % ~*(cos ) — ™~
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It follows from here that
toh g, () =1—[n/(n—1)]sin? 6.

The integration in Eq. (18) is fulfilled in the same manner as in Eq. (13). We apply to the Jacobi polynomial of Eq. (19)

the recurrence relation

(1—x)PFP(x) =[2/Qm+a+ B+ D][(m+a)PF~ P (x) — (m+ DPE P (0)],

and then the recurrence relation

PE— P (x)=[1/2m+a+B)][(m+a+B)PEP(x) — (m+BPP (x)].
Further, we use the orthogonality relation for Jacobi polynomials. After some simplifications we obtain that for (m},m5)

=(m,+1m,—1),

K= nl(m —ky+n—D(kj—my+n—1(m+n—1)(—my+n—1)ky—m,+ 1)(m, —k, + 1)]'/?

(n—1)y(my—my+n—1)(m—my+n)[(m +1)(—m,+ 1)]'?

for(m;,m;) = (m, - 1,m, + 1),

’

n[(ky—my+n—2Y(m, —k,+n—2)(m, —k,)(ky — my)m,( —m,)]""?

T =D (m—mytn—2)(m,—my+n— D[(my+n—2)(—m+n—2)]"72"

and for (m},m}) = (m;,m,),

Ke1— nky—m,+n—1)Y(m, —k, +1)

nim,—k,+n—2)(ky—my,+n-2)

Now, according to Eq. (25) of Ref. 13 one has

”aq(Erm ) Iml9m2;a) =

(n—1)(my—my+n—1)(m,—my+n) (n—1)(m —my+n—2)(m, —my+n—1)

[(my —ky+n— 1)k, —my+n—1)(m, —k,)(k, — m,)]"?

n

X

-+

(my—my+n—=2)[(m, —my+n—1)(m, —my+n—3)]1"2
" (0 —m;+m, —2n+2)m, — 1,m, + Lia)

nf(m —k,+n—1)k,—my+n—1)(m, —k, + 1)k, —m, + 1)]'?

[(mi—my,+n—1Y(m, —m,+n+1)]1"2(m, —my+n)(n—1)

X(o+m;—my)|m, + 1,m, — La) + [1 -

nim,—k,+n—2)(ky~my+n-—2)

nk,—my+n—1)(m, -k, +1)
(n—1)(m,—my+n—1)(m, —my+n)

(=1 (m,—my+n—2)(m—my+n—1)

] (0 —n)|m,myua). (20)

The other infinitesimal operators can be found by making commutation of 7°¢ (E,, ) with infinitesimal operators of the

representations of U(n).
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General analytical expressions of state expansion coefficients for SO, DSO,, _, in terms of
SU, DSU,_, DS0,_, are derived. Analytical expressions of isoscalar factors for

SO, DSO, _, for coupling (w,w,) X (w,0) to (w;w;) for the SO, (N> 4) irrep and
(vyv,) X (v50) to (viv}) for the SO, _, irrep with w, + w, + w; = w} + w; and

v, + v, + v3 = vy + v} are obtained by using these coefficients and isoscalar factors for

SU,DSU,_,.

I. INTRODUCTION

Isoscalar factors for SO, DSO, _, are very useful in
many physical problems, for example, in IBM-2, isoscalar
factors for coupling (w,w,) X (w;0) to (wjws) for SO ir-
reps in the chain of SO, DSO, are important in deriving
wave functions and calculating electromagnetic transition
rates and nucleon-transfer intensities in the SO, limit case.'

Some isoscalar factors for low N, especially for
80,280, and SO, D80, [which are simply Clebsch-~Gor-
dan (CG) coefficients] have been given by many authors.*>
Isoscalar factors for SO, DSO, _, for coupling /, X/, to
(L,L,) with all three irreps symmetric (i.e., with L, =0)
were considered by Gavrilik* and Kildyushov and Kuznet-
sov,> but only Norvaisas and Alisauskas observed that such
isoscalar factors are the analytical continuation of semi-
stretched isoscalar factors of Sp, D SU, X SU, of the second
kind, introduced by Alisauskas and Jucys.® The substitution
group technique of Sp, (SOs)’ allowed them to derive ex-
pressions for isoscalar factors of SO, DSO,, _, for the cou-
pling /, X/, to (L,L,) with its resulting subgroup irrep
(L {L}%).2"° But these results are very complicated, espe-
cially for L, and L j #0. These isoscalar factors are ex-
pressed by the sums over a series of SU, 6/ and 9j coefficients,
and can only be simplified in a few special cases.'® However,
the polynomial-type expressions (with as few summation
signs as possible) are useful in several aspects (cf. Ref. 11);
most notably, by their use one can obtain exact values of the
quantities that they represent in a much shorter computing
time when compared with the time spent by the standard
crude expressions.

In Ref. 12, in order to calculate the reduced matrix ele-
ments under the SO, D SO, group chain, the basis vectors for
SO, DSO, symmetric irreps are expanded in terms of
SU, DS0; basis vectors; this method can easily be extended
to the general SO, DSO, _, case. This method along with
the isoscalar factors for SU, DSU, _, given by Ref. 13
make it possible to derive the analytical expressions of iso-
scalar factors for SO, DSO,_, for the coupling
(w,w,) X (w;0) to (wjwj ) for SO, irrep and (v,v,) X (v;0)
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to (viv;) for SO, _, irrep with w, + w, + wy = w; + w}
and v, + v, + v3 = v{ + v;. The results are simple and will
be expressed in the polynomial-type forms.

1. EXPANSION COEFFICIENTS

First, we use boson creation (annihilation) operators
IS, [=(=)*_,l,p=—1L—1+1,.,lands" sto
construct SU,, , , generators, they are

IDP, k=122, g= —k —~k+1,.k

)P D, g= —L—14 1,0
2.1

Obviously, SU,,, , has the following decompositions:

SU,.. » <:g::\soz,+,, (2.2)
then we introduce the SU(1,1) group generators
S, =171%/2—s%s/2,
S_=11/2 —ss/2, 2.3)
S0=%; Ul +1,015) +—i— (s*s+ss7),
which satisfy the following commutation relations:
[SoS. 1= £S,, [S,..85.1= 28, (2.4)

Let the basis vectors of SU,,,,D80,,,280,,_, be
| NwvQ), where Q stands for other quantum numbers; the
matrix element of S_S_ under this group chain is

(5,85_)=85,(S,— 1)~ S(S—1). (2.5)
The relations between S,,S and N,w are
So=N2+{U+1)/2, S=w/2+ (+1)/2; (2.6)
then (2.5) can be rewritten as
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(S, S_)=IN—-w)(N+w+2D]). 2.7)

In addition, let the basis vectors of SU,,,
DSU,,, 1 DS0y,, be |[NnvQd). The matrix element of
S..S_. under this group chain is

(NnvQ|S, S_|N'n'v'Q)')
=8ynOlaa [B(n—v)Y(n+v+21—-1)
+i(N=—n)(N—n—1)5,,
—i[(n+v+2/-1)
X(n—v)(N—n+2)(N—n+1)]"2,,_,
—M(n+v+21+1)(n—v+2)(N—n)
XN—n—1)1"%6,,.,] (2.8)
Third, | NwvQ) can be expanded in terms of |[Nnv}) as

[Nwv Q) = 2 By, |Nnvd), (2.9)

where N = 2/ + 2. Acting with §,.S_ on (2.9) and using the
results of (2.7) and (2.8) (let N = w), we have
BUs[(n—v)(n+v+N-3)+(w—n)(w—n—1)]
=B" ,(M[(n+v+N-3)
X(n—v)(w—n+2)(w—n+1]""
+BY ,m(n—v+2)(n+v+N—1)
X(w—n)(w—n—1)]"2% (2.10)
By using (2.10), B /5, can be expressed as
Btm = Bom
[ (v4 N —3)lw! ]'/2
(w—n)(n+4+v+N-=3)(n—-ov)!

(2.11)
|
Bff»f))z((vz'&’i)B#"»[ SOy | (wae))  (w,0) (wiwé)]
' * SOy_y | (mvy)  (00) 1 I(vivy)
-y B<w;w;)(u;v;)[ SUy [(wwy) (0] (wiw})
ningk ik SUy | (myny)  (30) 1 (nin3)
where
[G (w,w,)  (wy0) (w;w;)]
gl (vw) (O Iwjvy) ]’

and using the relation

z (w—v)(n—v+ DN
e (w—n)(n+v+N—3Mn—v+ 1)

- QuitN-—HY (2.12)

(w+v+N-3)!
we have
_ N _ 1/2
By, = | Wbt E- DT o)
(v+N—-3)"Qw+ N — 4)!w!

with the sum over » in Eq. (2.12) going over even or odd
values depending on whether v is even or odd. The term
B %, is also valid when N is an odd integer, which will be
proved in Sec. IV.

lil. GENERAL METHODS OF EVALUATION

For the tow-rowed irrep of SU,, we can also write the
relation between the group chains SU, D3SO, DSO, _, and
SU,DSU, _, 2SO, _, similar to Eq. (2.9),

|[N1N2](N1N2)(U|U2)Q>

= z B Ef.v,'»z;i((';'vl;’w (NN, ] (myn2) k(v,0,)0),

k

(3.1)

where B ()"} is the expansion coefficients, and & is the

multiplicity label, because SU,,_ ; DSO, _, is not fully re-
ducible for tow-rowed irreps.

Next, coupling tow states given by Eq. (3.1), with one of
them symmetric, and using the Racah factorization
Lemma,'* we have

etc., are isoscalar factors for GDg, / is the multiplicity label for SO, _,, and

(w{wi)(v{vé)l: SUN (LU{O) (wéo) (wiwé)]

ik KM SUN 1 (n0)  (n0) | (ning)
[SUN_I (n,0)  (n,0) (ﬂiné)H SOy |(w,0)
SOy_, 1(v,0)  (v0) 1 k(vivy)] LSON_, | (v,0)

In comparing with the condition

(ww,) (V) 2
> Bouwaw) =1,
nonk

we obtain
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HSUM (mny)  (n30) (n;n;)] 32)
SOy_, 1 (vn)k  (00) | Tk(vivy) ]’ ’
(w20) (w{wé)] wiv whv,
v By = 1. _
(UZO) (U{ Ué) n (N) n,(N) 1 (3 3)
(3.4)
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B(wiwi)(u;vé)z.z[ SUv | (wi0) (w}0) (wiwé)HSUN_l (n,0)  (n,0) Winé)]
ik T & |SUy_y [ (n0) (m0) | (5m3) 1 1SOx—y [ (0,0) (0,00 k(vj03)
SOy |(w]0) (w}0) (wiwé)] wioy g wi
Bn', Bn:z . (35)
[so,v_, ®0) (@0 | (wjry) [T

By using the state expansion coefficients given by Eqgs. (2.11) and (2.13) together with Eq. (3.2) and isoscalar factors for
SU, DSU,_,,someisoscalar factors for SO, DSO,, _, canbederived and the state expansion coefficients given by Eq. (3.5)
can also be obtained for some special cases. Some results and a detailed evaluation will be given in the next section.

IV. THE METHOD EXEMPLIFIED

For the symmetric irrep of SUy, (wjwj;) = (w,; + w,0), the coefficient B {747 “* is known,

[ SUy  |(w0) (w0 (w1+w20)]_1
SUy_, 1 (w0) (w0)l (w, + w,0) ’
and inserting them in Eq. (3.2), we get
[ SO, |(w,0) (wy0) (wl+w20)]
SO,_; 1 (1,0) (v,0) (v0)
—(—) (w,+w, +v+n—3INNw, + w, —v)!2w, + n — YN 2w, + n — HMylw, W' (2v, +n —-3)2v, +n — 3)
2" 4 =S5+ n — )N w, + w) (v, + v, + v+ 1= —v, + )NV, — vy, + V)N, + v, — V!
(vl+v2+v+2n—8)!!(v—v,+v2+n—5)!!(v1—v2+v+n—5)!!(v1+v,_—v+n—5)!!]‘/2 4.1
QQw, + 2w, + n — HMNw, — v (w, — v )W, + v, +n— NN w, + v, + 1 —3)! ’ '
where
_[fw—v,—v,y), for n=4,
b= [0, for n>4. (4.2)

This formula is valid for n>4 and the isoscalar factor for SU, _, DSO, _, (see Ref. 15) has been used in deriving Eq. (4.1).
By using the special isoscalar factor for SU, _, DSO, _,,

(nini)]zl’

(nin3y)

(nny)  (ny0)
(nny)  (n0)

an important relation between the isoscalar factors for SO, 2SO, _, and SU, 3SU, _, may be derived:

[ SO,
SON_ 1

(ww,)  (wy0) (wiwi)]
(b)) (150) 1 (viv3)

b o SU
— ("'1“’2)("1”2)(3 (wyw,) (v10,) B (WJO)(VJO))—I [ N (4.3)

(ww,) (wy0)] (wiw;)
e (0402} (N) (v:0)(N) SU,_,

() (01 (viv))

where the conditions w, + w, + w; = w] + w; and v, + v, + v; = v + v should be satisfied. In this case the resulting irrep
(wiws) or (v;v}) does not occur more than once; thus all the multiplicity labels can be omitted.

The expansion coefficient B {{33*"” can be derived from Eq. (4.3) by using the more special isoscalar factors for
SU,DSU, _, and SO, 2SO, _,,

[(uh0) (u50)| (w,w,)
0

(0) (v0)
(see Refs. 10 and 13); then B {4%34" can be expressed as
B(w,w,m):[(wl+N—4)!(w2+v'+N—4)!(w1+v+N—3)!(w2+N—5)! 1 ]‘/2

oM (v 4+ N—Ww, +w,+ N—4)!1(20+ N—3)(N -5 2w, + N — )1 (2w, + N — 6)!
(4.4)
The expansion coefficient B {/31{;* can be obtained from the following equation:
SUy |0 (w0 (wwy)]*] ™"
B(::.Uw;)(v.vz) — Bwm. BYnm -2 [ N 1 2 12 45
(v,0)(N) [rhznz ( (N n,(N) ) SUN_ . (nlo) (nzo) (Ulv2) ( )
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and the property of the isoscalar factors for SU, DSU, _, given in the Appendix:

Bwwyee _ [ (Wi +0+ N—Hlw, + v, + N~ Hlw, + v, + N = 3w, + v, + N— 5)!
(o) () (v + v, + N— ) (w, +w, + N— )12, + N—3)(2v, + N—5)!!
1 12
% ] _ (4.6)
(2w, + N— 12w, + N— 6)!

Equations (4.5) and (4.6) are valid when N> 4.
Theorem 2 of Ref. 9 shows us that

[SON (w,0) (w,0) (wiwé)]

SOw_, | 00 0| (ju})
_[ SOy |w +4(N=N")  w,+}(N=N")| (] +4(N =Ny +§(N—N") (47)
=50y 1 Loy 43V =N s+ 3N =N | @i 43N = N3 438 =N ]’ '

for N'>4 and N>N'. Because the isoscalar factors for SU, DSU, _, are N independent, Eq. (4.7) requires that [see Eq.
(4.3)]

B W+ 3N — Nw, +é(N_ 1v')()5l\;.,)wL UN=NY+HN-N) _ B gw.wz)(v.vz) (4.8)

(0, + 3 (N— N, +}{N—N") no) (V) s
and
{W+ }(N— NN+ (N=-N"O) __ (w0) (10)
B(v+f<N—N')owv’)i =B oy - (4.9)

These conditions are indeed satisfied; thus B {/,s) " is valid for any integer N except for N<4.
Using the isoscalar factors for SU, DSU,, _, given by Ref. 13 and Eq. (4.3), isoscalar factors of the following type can be
derived for SO, DSOy_:

[ SOy |(wuw,) (w0)] (0] w;)]
SOy_, | (211y) (B0 | (viv3)
Jw+y +N—-4)Nw; +v; + N—4)(w; +v] + N-3)!
(w,+ v, + N—HNw, + v, + N—-H(w, + v, + N=3)!
(W, +0 + N-5)1Quw, + N—¢MQuw, + N— 6, + v, + N— ) (w, +w, + N —4)!1(2v, + N— 3)!
(w, + v, + N—5)1Quw; + N—41Qw; + N—-6)N(v; +v3 + N— ) (w] +w; + N— ) (2v] + N-I)!
v, + N—51"Q2u; + N = 312wy + N — $)M(w; — v3)! (v, — v, + D (w] —w; + 1) (o] — o)
Q2v; + N — 5w, + v + N — 3y, — 05 (w] — w)) (w5 — w,)!(w] — w, + DI (w] + 1)!
: — )V, — Yw, — w’)lw,! Ww, — —u)! 172
(v — ) (V] — v + D w, — w))wl(w + DI w, — v)(w, — ;) (0, — v+ DI, — w0, + l)!]
wi (v — wy)W,! (v, + M (w] — vy N (w; — v M (w] — vy + 1)!
X (=) W, =+ x—y+ 1) (0, — w0, + )0, — v + X)W, — v; — X)W — v, — (W] — v+ 1 — PN w) — v, — p)!
> (v, — v, + x + DI(w, — v, — )] — v, — )y —wy + ) (wy, —v,+ 1 —p)(wy — v, — )
X ! , for N>4, w,+ w, +w,=w, + w;, v+ U+ 0;3="0] + vj. (4.10)
(v =) + 0, =N, — 03 + 03+ 1= p)!
V. CONCLUSION

Using the state expansion coefficients for SU, DSO, 380, _, basis vectors in terms of SU, DSU, _, DSO, _, basis
vectors and isoscalar factors for SU, DSU,, _ ,, we obtain some isoscalar factors for SO, DSO,, _ , . The method outlined in
this paper can also be extended to other group chains, for example, when the expansion coefficients for the basis vectors of the
one group chain in terms of the other and the isoscalar factors for the one group chain are known, the isoscalar factors for the
other group chain can be derived by using this method.

APPENDIX: SOME PROPERTIES OF ISOSCALAR FACTORS FOR SU,, DSU,,_, AND SOME SPECIAL ISOSCALAR
FACTORS FOR SU, OSU,,_, AND SO, 0SO,,_,
The isoscalar factors for SUy DSU,, _, can be expressed as'’
[ SUy, (wiw;) ]
SU,_, (nin3)

(ww,) (w0)
(nyn,) (n50)

Wy + W+ Wy Wi+ Wy A+ Ny nyni+ 0
><[(w3 —n)l(n, —ny, + D)(wy —wj + 1)(n] —n)(n; — n)l(ny — ny + DN w; — w))w,l(w, + 1)!
(n, — n))N(w] —w))(w; — w)(w; —w, + DN w] + Dw;l(n, — wy)nl(n, + 1)!
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(w; — n )W, — )N (w, — ny + DU, — ws)ngl(n) + 1172

(wi — a))(w; — n))W(wy — ny + 1!

(wi —ny —x)(ny—n; +x)(n—w, +x)(n, —ny+x—y—1)

Xy (=) *>
xy

x(n, — ny, + x + DN w, — ny — )] — ny — x)(n, — wj + x)!

(ny—ny — )W wi —ny + 1 — ) (wj —ny — y)!

X .
(wy—ny+ 1 =PI wy, — ny — )y + 0y —n — ) n, —nj +n;,+1—p)!

(A1)

Equation (A1) can be simplified when w, = 0 or n, and n; = 0, and it can be expressed by the following SU, CG coefficients:

(w;0)
(n,0)

(w,w,)

[ SU,,
(n,0)

SUy -1

(wiw;)]
(n0)

6w.+w2+w,w[+w2 n, + n3n [

X(—)"’[ §(n —wy) J(w] — wj)
i(n —ny— w,)

and

[SUN w, w, (w;w;)]

SUy_y Iny  nyl (niny)

=0

w, + w, Wi + W5 Ny + ny nj+ nj

(w; — wy) ) (w;, —wj) + 1) (w, — w})! ]‘/2
(w] —wNWw; —w)) (w, +wy;—n+1)
Yw, +w;—n)
Ww; —w, + wy) | 4(ny — n3 — w, + ws)

], (A2)

[ (W) —w; + 1) ]”2(_ na—ny [3(m1 —n3) A —wi) | $(wi +w; —ni —n3) (A3)
(wi +w), —n,—ny+ 1) Wny—ny)  Jw,—wy) | §(ny—ny—w; +w,) '
From Eqgs. (A2) and (A3), an important property of isoscalar factors for SU, DSU, _, can be derived:
[ SUy |w, w, (w{w;)] B [ SU, |w, —n; wz—n;' (W, — nj w, —n;)] (Ad)
SUy_y Iny  myl (niny) SUy_y [0y —ny  ny—ny (n} —n30)
Using Eqs. (A4) and (4.5), we obtain
B aws — B (= vt o) (0 = 0:0) (AS)
The following expressions for the special isoscalar factors are of importance:
[ SUy |w, wy|w, + wz] _ [wl!wz!(wl +w, —n;—n)(n, + nz)!]"2 (A6)
SUy_, Iny n,|l ny+n, (w; — n)nW(w, — ny)In(w, + wy)! '
[ SUy |w, w, (w;wg)] _ [ nlw(w) — m)w, — w; )N w, —wj; + 1) ]‘/2 (AT)
SUy_yin 01 n wil(n — wy) )N w) + DI w, —n)lw, —wi)t]
[ SOy |w, w, (w;w;)]
SOy_,In O n
W+ N=—Hl(w] +n+ N—-H(w] +n+ N—3)!(w; + N—5)!
(w) +w; + N—4)!1Quw; + N— 42w, + N—6)(n — wi)!
Qw, + N —H1Q2w, + N — NN — 3)nlw,! (w] — n)(w;, — wy)(w] —w} + 1) ]"2
n+ N—Hw,+n+N-3)H(w, + N—INwj!l(w; + Dl (w, — n)l(w, —wj)! ’
for N>4 and w, + w, = w; + wj;. (A8)
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The properties of discrete supergroups that represent the homotopy groups of super Riemann
surfaces are emphasized. After the study of the superforms invariant with respect to these
supergroups, the set of superconformal differentials are defined and an example is given of
those by defining Poincaré’s super theta functions. Some remarks on a possible definition of the

Jacobi variety of a super Riemann surface are given.

I. INTRODUCTION

In the covariant quantization of bosonic string theory
the multiloop amplitudes are expressed in terms of integrals
over the spaces of genus g conformally inequivalent Rie-
mann surfaces.! These spaces, called moduli spaces, have an
extensive mathematical literature based on the early works
of Riemann, Fricke, and Teichmuller.

The analysis of the dependence of the string amplitude
on the moduli coordinates leads us to recognize that the bo-
sonic string amplitude is divergent. To avoid this problem, a
supersymmetrized version of the theory (superstring theo-
ry) has been proposed.?

A geometrical formulation of superstring theory re-
quires new structures with an anticommuting coordinate,
which simulate the properties of ordinary Riemann surfaces
(RS’s). These new objects are called super Riemann sur-
faces (SRS’s). The supersymmetric string amplitude de-
pends again on the space of superconformally inequivalent
SRS’s called supermoduli space. Several interesting results
have been achieved on the analysis of supermoduli.®®

In this paper we go over some of the fundamentals of the
mathematical theory of super Riemann surfaces. In particu-
lar, the analysis of the properties of the transformation su-
pergroups involved in the theory enables us to give a fairly
detailed description of the representations of the homotopy
groups of SRS’s, and to define the category of marked SRS’s.
Once the notion of marking is clarified, the uniformization
procedures for SRS’s are straightforward.

In particular, via the Schottky uniformization, we can
define the space of superconformal differentials. That leads
to a possible definition of the Jacobi variety of a SRS that
could be a useful tool in the supermoduli analysis.

This paper is organized as follows: notations and re-
views of some of the mathematical apparatus needed later on
are given in Sec. II. The topological properties of the super-
groups of transformation are analyzed and the meaning of
the discrete supergroup is clarified in Sec. II1. The definition
of SRS is recalled and the uniformization process for com-
pact SRS, defined in Ref. 3, is gone through in some detail in
Sec. IV. As a result of that, we get an explicit realization of
homotopy groups of compact SRS’s. That allows us to define
an alternative uniformization process by means of Schottky
supergroups. In Sec. V we use the results of Sec. III to define
automorphic superforms and, via the Schottky uniformiza-
tion, we are able to show the space of superconformal differ-
entials of a SRS. Finally, we give some remarks on a possible
definition of the Jacobi variety of a SRS.
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Il. NOTATIONS AND DIFFERENTIAL CALCULUS ON C

In this section we define the notation and recall some
standard results on supermanifold theory. All the details can
be found in Refs. 7 and 8.

In dealing with supersymmetry we need a space where
commutative and anticommutative coordinates are treated
on the same ground. A good model space is a Grassmann
algebra with a certain number L of generators §;, K,

=K{L(B:),(B; AB;)s., Bi A --- ABL}, where K is a field

and A is the Grassmann product. Here K, is a Z,-graded
algebra where the even (odd) sector K}° (K2') is that gen-
erated by combinations of an even (odd) number of genera-
tors, so any point of K; can be regarded as a couple (z,4),
thatis, K, = K;°e K?'.

The projection map to the zero degree element of the
Grassmann algebra £: K, — K is called the body map and it is
an algebra homomorphism; moreover, ker ¢ is the ideal K,
of nilpotent elements (called souls) generated by the 8,’s
defining a filtration of K, by ideals K .For each zeK, we
will call the set £~ '£(z) the ¢ fiber on z. Two different topolo-
gies can be defined on K; .

(i) The de Witt topology is the weakest topology such
that ¢ is continuous, that is, U is de Witt open on K, iff
U= e~ '(U) for some open set U on K.

(i) The Rogers topology is defined by the /; norm on
the coefficients of the basis of K .

That obviously extends to the product

K" =Kp°X - XKpOX Ky X - XK' .

NN N~

In what follows we will be mainly interested in G, (i.e,
K = C) and we choose the value L in the L o limit, re-
garded as a direct limit of spaces (asin Ref. 8). We will write
C, = C". A function @ on C"! to C"! is said to be superana-
lytic if it is polynomial on ¢, that is,

a(2,3) = @o(z) + 953,(2), (2.1)

and each coefficient @, @,, is uniquely defined by an analytic
complex function, say @, w,, via the expansion

&,;(2) = w;(e2) + w{(ez) (z — €2)

+ o/ (e2)(z —€2)> + -+ (i=0,1). (2.2)
A (m,n) supermanifold is a topological manifold on C™"
with superanalytic transition functions. Since two topologies
are available on C™" we will have de Witt or Rogers super-
manifolds. (See Fig. 1.) Any de Witt supermanifold M with
atlas {(U,,@; ) } admits a body M, which is the m-dimension-
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local
coordinates
of §L, (R)

local
coordinates R®
of SL, (R)

FIG. 1. Local coordinates of a de Witt supergroup.

al complex manifold with atlas {(5§,- (U), @, = £0@;)} and
if the transition functions of M are ¢, those of M, are the ¢;;
in the sense of (2.2). Vice versa if an m-dimensional complex
manifold M, is given, one can define an (m,n)-dimensional
de Witt supermanifold as follows: the charts are the inverse
image via ¢ of those of M, and the transition functions are
@; given by those @; of M via (2.2).
The following equivalence relation on M, = - U, U,
CC™°is defined: (z,£(z)) ~(2',£(2")) iff e(z) = e(2), @ (2)
=7, zeU,, z’€U,. The quotient M = M,/ ~ X C*" gives a
{m,n)-de Witt supermanifold with body M,,. Although this
construction is a great source of examples of supermanifolds,
it is important to note that not all the (complex) de Witt
supermanifolds can be achieved by this way.? The relations
between ordinary manifolds and supermanifolds is, in the
Rogers context, far more intricate.'® Finally, we recall the
definition of 1ntegrat10n on C"'. First, an ordinary contour
1ntegra1 is defined for p' paths of C'°: let : [a,b ] - UCC!°
beap' function (path) and let f: U— C*' be continuous, then

Lfdhﬁ Sy (e,

The Cauchy theorem holds, namely, if fis superanalytic on
and inside a closed path of C'°, y, then §, fdz = 0; more-
over if fis superanalytic but with poles inside ¥, then

§ fdz =2mi (sum of residues at the poles).
v

Note that by (2.2) the singularities of fare only dependent
on the body values £(z). Then the singularities of frelative to
the path  of C'° are in fact relative to the projected path ey
of C.” However, the residues (2.3) can have values in C"'.
The ordinary contour integral on C'° has to be patched with
the Berezin integration rules on C*':

J-d19=0, fd1919=1.

For any superanalytic function @, the result is

3§ dz dH (@, + 9B,) = fﬁ dz 3,(z). (2.4)
v Y

Note that the Berezin integral is defined without ambiguity
because the body manifold is compact.

ill. DISCRETE SUPERGROUP

A super-Lie group (supergroup) is a superanalytic (to-
pological) supermanifold that is a group with superanalytic
(continuous) operations. We recall the construction of a su-
per-Lie group starting from a Lie algebra.'" In fact, the un-
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derlying linear structure of a super-Lie group is not a Lie
algebrabut a graded Lie algebra, that is a Z,-graded complex
algebra & = g, @ ¢, with a product {-,*) which verifies a
generalized Jacobi identity.

The Grassmann envelope of the graded Lie algebra
G = 20® g, isthespace T = C'0® 2,0 C*' ® ¢, that turns
out to be a Lie algebra with respect to the Lie product
[xg,yh] =xy® (g,h ). A topology can be defined on Z re-
quiring the projection map @: % —C™" to be a homomor-
phism (here m,n are the complex dimension of the vector
spaces go, #), Tespectively). An exponential map is defined
on & which locally defines a super-Lie group G with the
product given by the Campbell-Hausdorff formula.

The charts of G are {(U,p ° exp~ ') } and its topological
structure is given by requiring the maps ¢° exp~' to be ho-
momorphisms. Then the topology of G dependson the topol-
ogy defined on C™": if there is the de Witt (Rogers) topol-
ogy, G will be a de Witt (Rogers) super-Lie group. In both
cases the transition functions and the group operations are
superanalytic.

Moreover, by construction, G admits a body G, locally
defined by the Lie algebra 2. Here G'is an analytic Lie group
with g, as its Lie algebra.

The whole picture is given by the following diagram:

“' exp™' g—’cm"

El e | le . 3.1)
G— g0 —>Cm
exp”’ @

As an example, take the following graded Lie algebra with
commutation-anticommutation rules:

[Lm:Ln] = (m—n)L(p i nymoa2s

Y =C{L_,LoL}oC{G _ ,,G,)r )
[Lm!Gr] =(m/2 —1r)G( 4 rymoa2s
{6,.G}=2L,, .

This is a subalgebra of the Neveu-Schwartz algebra,” and its
even sector g, is the Lie algebra of SL,(C). The super-Lie
group obtained by exp of the Gragsmann envelope
9 =C{L_,,Ly,L,}aC*{G, ,,}is S'L,(C), which has
local coordinates on open sets of C>2, namely,

a b b,—ab

g(a,b,cyd,’}’,(s) =} C d dy —_— C5 s ad —_ bC = 1,
y 6 146y/2

(3.2)

with g a complex (2/1) supermatrix.'? We stress again that
two possible topologies can be given to G = S L,(C). In the
case of de Witt topology, it is natural to define a discrete
supergroup of G as the following.

Definition 3.1: A subgroup T of a de Witt super-(Lie)
group G is discrete iff the image of T via the map E of (3.1),
which we will call sI‘ is a discrete subgroup of the body of G,
G.

It follows that the points of T have as local coordinates
the £ inverse of the coordinates of isolated points of the Lie
group G (see Fig. 2).
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FIG. 2. Local coordinates of a de Witt discrete supergroup.

We have by definition the following proposition.

Proposition 3.1: Any discrete supergroup T of G has a
body which is discrete with respect to G.

Now we want to know what are the conditions to get a
de Witt supermanifold as a quotient of a de Witt supermani-
fold M with respect to the discontinuous action of a discrete
supergroup acting on it.

We recall that a de Witt supermanifold M is a bundle
over its body M, and the local representative of the bundle
projection map is £. Therefore the action of a topological
transformation group of M has to preserve the ¢ fibers, that
is,

e(g'p) =¢€(g)(p). (3.3)
Hence the Rogers topology is not in general an admissible
topology for a transformation group G of a de Witt super-
manifold M: G has to be a de Witt supergroup. Now we have
the following proposition.

Proposition 3.2: Let M be a de Witt supermanifold, Ghbe
a super-Lie group of transformations of M, and T a discrete
subgroup of G with discontinuous and fixed point-free action
on M, then M /T" is a de Witt supermanifold.

Proposition 3.2 (whose proof is standard?) is not com-
pletely satisfactory because we do not know how to check the
conditions on the action of I on M, mainly the discontinuity,
and we need a more concrete condition. We note that if T is
discontinuous on A, then its body eCis discontinllous on the
body of M, M,,. The converse is almost true, if €I is discon-
tinuous on M,, the set {€y: ey(ep) = €p} is finite for each
point ep on M,, and if the action of T is fixed point-free, the
previous set is the identity. Because of (3.3) an element of r
cannot move along the £ fiber on £p, so the action of FonM
would be discontinuous and fixed point-free. But elements ¢
of T such that £y = | are admissible topological transforma-
tions of a de Witt supermanifold and they act only along the
¢ fibers. However in the following sections we will be inter-
ested in discrete supergroups I, which, for geometrical rea-
sons, are isomorphic to their bodies £I". Equivalently the s
will be isomorphic to their quotients with respect to the
equivalence relation induced on T by ¢ that is,
Y1~ Y2 & €Y, = €y,. With this condition the above ambigu-
ity disappears (in particular the unity 15 of T corresponds to
the unity 1 of I'), then one has the following proposition.

Proposition 3.3: Let M be a de Witt supermanifold and T’
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a de Witt discrete supergroup such that T =¢T. If £T" is dis-
continuous and fixed point-free on M, then M /T is a de Witt
supermanifold.

Now if # is the complex upper half-plane, let
= £7'(#°) be the complex super upper half-plane. A
subgroup T' of S L,(R) acts on 2 by the usual Mdbius ac-

a b by—ad

c d dy—cb
(az + b+ J(ad — by)
cz+d+Hcb—dy)’

tion,
(5)
y 6 14+6y/2 J

yz+ 6+ 31 +5y/2))
cz+d+ 3cd—dy) '

(3.4)
The classical theory tells us that the action of any discrete
subgroup of ST L,(R) on 5 is discontinuous,'® so in this case
Proposition 3.3 reads as follows.

.. Proposition 3.4: Given & and a discrete subgroup T of
S L,(Q),if el is fixed point-free on 77 (so 5, /eT" is a com-
pact Riemann surface), then /T is a de Witt supermani-
fold.

In Sec. IV we will see that %7°/T is in fact a super Rie-
mann surface (SRS) and any SRS with a compact body is
equivalent to /T via some T < S L,(R).

IV. SUPER RIEMANN SURFACES AND SUPERMODULI

Following Ref. 3, super Riemann surfaces are superana-
lytic supermanifolds M on C"', such that their tangent bun-
dles TM are spanned by the basis D = d /3¢ + (3 /9z),
D? = 3 /dz; this restricts the transition functions of M to be
of the form

i=F+oWf, d=v+F + oy, (4.1)
which also implies that D transforms homogeneously,
= (D3)D, (4.2)

and the “metric” dz + & dJ transforms homogeneously as
well. Here M is also required to be de Witt type; this will be
assumed from now on. The body of M, M,, is a Riemann
surface with transition functions induced by fvia (2.1). A
spin structure is induced on M, by the consistent way to
choose the square root implicit in (4.1). On the other hand,
given a Riemann surface M, with a spin structure, one can
define, by the methods of Sec. II, a SRS M with transition
functions:

F=fz), d=9f(2), (4.3)
where]"is the expansion (2.2) of the transition functions of
M,, /- Such SRS’s are called split.

We recall the definition of three split SRS’s G, 7,
CP ! whose importance relies on the result of Ref. 3.

Proposition 4. 1: The following three split SRS’s are the
unique ones having simply connected RS’s as bodies.

(a) C*'and 2 Their bodies are the complex plane and
the upper half-plane, respectively, which have unique spin
structure and transition functions f(z) = z. Therefore the
superconformal transition functions on C"“!, & are
(2,9 = (z9).

(b) CP"!: Its superconformal structure is induced by
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the unique spin structure on the Riemann sphere CP ' and the
superconformal transition functionsare (£,4) = (1/z,4 /z).

We can properly call CP ! the super Riemann sphere
because a superanalog of the stereographic projection exists.
Let us introduce it briefly: the supersphere S %2 is given by the
equation on R>?

X242 +x3+209,=1. (4.4)

By the implicit function theorem,' it turns out that the
space of solutions of this equation is a (2,2)-dimensional de
Witt supermanifold with the body the ordinary sphere S°.,

57 H(x X0 0,192)

We define a projection of S % to CP : let N be the north
pole of S2, we call # (N) the ¢ fiber of N, and consider the
map s: §2? — F (N) - R?? (noninvertible elements), de-
fined by

S(“;,uz,u3,191,192) = ( ul uz 191 19.2 ) .

1“'”3, l—u3’l—u3
This map has its values on R>? (noninvertible elements),
because we have taken off F (N), then e(u;) #1 and e(u,)
or £(u,) are different from zero.

The inverse map is

1—u3’

- ( 2, 2x,

X +x 4209, —1 29, 29, )

1+x2 +x2+200, 142 +2 4200, 1+ +22 +200, 1 +2 +22 +200, 1 +x2 +x2 +20,8,/

Once the identification R>?=C"' has been done, the map s
gives a correspondence s: $>?>—»CP "', where the ¢ fiber
% (N), which is isomorphic to C"*' — C, and points of CP !
with coordinates [z,,2;,©], where z, is a noninvertible ele-
ment of C'° (so z, has to be invertible), are left out. These
points are in one to one correspondence with C! — C as
easily seen by using affine coordinates (z,/z,,9 /z,).

Then the identification “points at infinity” & (N) given
by (24/2,,3 /2, )= (X,X,,0,,3,)— (X, %,,1,4,1,) completes
the stereographic projection. The group of rotations of § %2,
that is, the group that leaves invariant the quadratic form
(4.4), is given in Ref. 15. If we project this group on C*' via
s, that is,

s! Rot

(2,0)—(x1,%5,%3,,3,)— (x] ,x3,x3,3 |, 3 ) (2,3 ),

and if we allow the coefficients of the group to be complex,
we get the group S L,(C). This group is just the group of
superconformal automorphisms of CP"'. The action of
S'L,(C) on CP"! in affine coordinates or equivalently the
action of § | L,(C) on C"! as the fractional linear transforma-
tion group is given by (3.4). The genus of a SRS is that of its
body; Proposition 4.1 tells us that the genus zero SRS are
only C*!, 2, CP'!. What happens to the higher genus? It is
known that any RS M, can be regarded as a quotient of its
covering space N, with respect to the group I of its covering
transformations. Here I" is isomorphic to the homotopy
group of M, 7,(M,), and it is a discontinuous, discrete, and
(if M, is compact) fixed point-free subgroup of the group of
conformal automorphisms of N, Aut(,). Here ¥, can be
one of the genus zero RS N, = C,7°,CP!: the analysis of the
group Aut(X,) implies that 7,(M,) can be realized as the
discontinuous subgroup of the Euclidean or hyperbolic iso-
metries if N, = C or 77, respectively, and it is the identity if
N, = CP'. This topological argument has to hold also in the
context of SRS’s. Note that, since SRS’s are bundles over
their bodies with contractible fiber, then the homotopy
group of M is isomorphic to the homotopy group of its body
M,

Proposition 4.1 implies that the covering space of any
SRS can be N = C',57,CP"', then M is the quotient of N
with respect to the group of its covering transformations I'.
Here T" is a subgroup of the group Aut(N) of superconfor-
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U . e .
mal automorphisms of N, and it is isomorphic to the homo-

topy group of M, and hence to the homotopy group of the
body of M, M,,.

As in the classical theory, we have to analyze separately
the three cases N = C"!, &, CP! : the latter is again the
simplest. Namely, Au’t(CP1 1) is just S) L,(C) whose trans-
formations have one fixed point on CP ! at least. It follows
that the only admissible T is the identity, so any M with CP !
as the covering space is homeomorphic to CP"'. As noted in
Ref. 3, for the covering spaces N = C!!, Z, the situation is
more intricate. This is because the group of superconformal
automorphisms of these spaces is not a subgroup of S L, (C),
and one can find discontinuous, discrete, fixed point-free
subgroups of Aut(}V) isomorphic to their bodies which are
not subgroups of S L,(C).

But we know that the homotopy group of a SRS M with
covering space C"! is isomorphic to the two-dimensional cy-
clic Abelian homotopy group of its body which is a complex
torus 7. The homotopy group of T has an explicit realization
in the group of the Euclidean isometries of C. The general-
ization of the Euclidean metric on C!' is the metric
|dz + 9 d|,> and the aim is to represent the homotopy
group of M as a group of isometries of (C"',|dz + 3 d? ).}

_ Therefore we restrict ourselves to consider C (and later
#°) with its superprojective structure rather than its super-
conformal structure. Roughly, this is what happens in the
uniformization procedures for complex manifolds of higher
dimensions.'® As it happens C"! has several similarities with
C* two (super) complex coordinates, (super) analytic
transformations for each coordinate, a notion of (super)
conformality which looks like the notion of (quasi) confor-
mality of C2: the maps that transform homogeneously the
metric dz 4 & d?d.

An explicit description of the representation

p: (M) - {super-Euclidean isometries of C*'}

has been given in Ref. 3 (M is a genus 1 SRS).

An analogous direct realization of the group (M) is
possible also in the higher genus. (See Fig. 3.) Namely, a
compact (i.e., with compact body) SRS of genus g > 1 can be
realized as quotient 27/T, with T the discrete subgroup of
S L,(R). We can think of I as a subgroup of the “superhy-
perbolic isometries” of 2 (that is, transformations which
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FIG. 3. (a) Fundamental polygon of a genus
two Riemann surface. (b) Fundamental do-
main of the representation group I of 7, (M).
(c) Fundamental domam of the representa-
tion group T of m,(M).

preserve the metric |dz + ¢ d¢ |/|Imz 4+ 83 /2|) once a
marking on M has been chosen.- A marking on M means a
choice of a map p such that in

[N £
7y (Mp) -8 L(R) - SL,(R) (4.5)

the map £9p is a monomorphism.

Then the generators 7; of thegroup I’ = plm (My)) cor-
respond, by &, to the 2g generators T; of I = £-p(w,(M,))
and if D, is the fundamental domain of the group I' (the 2g
hyperbolic polygon), then £~ (D,) is the fundamental do-
main of T.

In order to get the representation

(M) —{superhyperbolic isom.}

we still have to impose the commutative condition on the
generators

[T23’Tg] [Tx

Because each of the T, is defined by a point of R*? then the
group .

plm (M) =T

+oli] + L

= (TI""’TZg.) |

H' (L, Scf{"/Scf{"+ D) =
H'(M,K

(X is the cotangent bundle of the body M,,). Then we have
the desired result by passing to the direct limit
Scf, = lim,, Scf,/Scf{™.
V. AUTOMORPHIC SUPERFORMS AND
SUPERCONFORMAL DIFFERENTIALS

In this section we will define the space of automorphic
superforms of weight & and in particular the space Q of auto-
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depends on (6g,4g) parameters minus the commutative con-
dition which imposes three even and two odd conditions:
then I" depends in fact on (6g — 3, 4g — 2) parameters. Note
that if one operates a conjugation by an element T of
S L,(R) on all the generators of the group T, that is,
S TT,T~' for each i=1,..,2g, the resultant group

= (S8 2¢ ) gives the same SRS M, up to a superconfor-
mal diffeomorphism.

Therefore to compute the number of SRS’s up to super-
conformal diffeomorphisms (supermoduli), we have to sub-
tract this freedom by performing an overall conjugation.
That implies three even and two odd conditions on the pa-
rameters of the basis 7.

By varying with continuity the set of parameters of T,
one describes a (6g — 6, 4g — 4) real de Witt supermanifold
which is the super analog of the Fricke space.!” In fact, the
ambiguity of the overall conjugation implies that there exist
two different spaces of supermoduli related one to the other
by the inversion 7 (see Ref. 3); that is, the Fricke supermani-
fold has a double covering. This formulation of supermoduli
parameters as (real) coordinates of the Fricke supermani-
fold has been given in Ref. 3.

An interesting way to recognize the complex structure
of the covering space of supermoduli space is given in Ref. 5.
There the Fricke supermanifold is shown to be related to the
set Hom(I',Scf) of the homomorphisms from the group
I" ==, (M) to the group of superconformal automorphisms
of 7, Scf.

P 5
The marking is I' +Scf—SL(2,R) with £9p injective,

and the Fricke supermanifold results isomorphic to the quo-
tient of the group Hom(I',Scf) with respect to the conjugate
action of Scf on the space of homorphisms, that is
Hom(T',Scf)/Scf. This space is shown to be a complex su-
permanifold of dimension (3g — 3, 2g — 2) by the following
cohomological approach which we briefly describe (all the
details are in Refs. 5 and 6).

All the homomorphisms I' - Scf with a fixed body are
classified by the cohomology group H '(TI,Scf,) defined by
the (non-Abelian) action of T" on the group Scf, = ker ¢.
One can actually compute H '(T,Scf,) by noting that Scf,
has a natural filtration given by Scf{™ = {( f;#) asin (4.1)
such that ( £;J/f',¥) is congruent to (z,1,0)mod C" }.

The cohomology of the quotient groups of the filtration
Scf{™/Scf{" * ! is known because basically these groups are
defined on the body, and one has

H'(MJK-T)eC/C'*'=(2g—2) gé"/(':"“ (n odd)

“HeCV/C +t'=(3g—13) gé"/(:"“ (n odd)

{norphic superforms of weight 1, that is, superconformal dif-
ferentials. Moreover, via the Schottky uniformization pro-
cess, we can construct explicitly g linearly independent
superconformal differentials that give a basis of () for those
SRS’s which induce an even spin structure on the body.
We recall that, for SRS’s, the analog of the canonical
bundle is the (super) line bundle X defined by the cocycle
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9z, Jz,

B25 39
g =Sd o5 39
dzg diy
_ 0z,/0zg
T 39,/89, — (89,/325) (92,/925) "N (32,/395)

(3.1)

where zg, 95) - (z,,, J,, ) are the transition functions of Min
U, NUj (see, for instance, Ref. 18). In fact, K is the (super)
line bundle defined by the class [g,z] in the cohomology
group H '(M,,0 ), defined on the body with values on the
sheaf of invertible superanalytic functions on M. The global
sections of K are globally defined (1,1) superforms on
M,é dz dd. Moreover, by uniformization, these sections can
be regarded as superanalytic functions & defined on & and
such that

oy (2,8)) = d(3,5)
(cz+d)?

= @ (z,9)
(1+8y/2)(cz +d) + H(y8 — b¢c)

(5.2)

for any # of the group I, where M = %#°/T". We call such an
@ an automorphic superform of weight m = 1. An automor-
phic superform of weight meZ will be a section of K™ . For-
mula (5.2) implies transformation properties on the compo-
nents of @ in the expansion on ¢: @ = @, + J@,. Namely, by
expanding both sides of (5.2) in powers of ¢ and comparing
the coefficients with the same degree, we have, for split SRS,

@o(2) = (cz + d) " '@y(2),

= (cz+d) "%, (3),

Z=(az+b)/(cz+d),
(5.3)

@,(2)

where, for nonsplit SRS,
&,(z)

= (cz+d)7?[@,(2) (1 + 36y) + do(2) (6c — ¥8) ],
(54)

with Z as in (3.4).

Transformations (5.3) mean that the weights of @,,&,
arel, 1, respectively, and we can think of & as odd valued and
with conformal weight } (note that  has conformal weight

—1). The set a of superconformal differentials splits into
3, + 8, where {1, is in a one to one correspondence with
the space of i-differentials on the body, that is, the space

H°(M,,0(JK)), and Q1, is one to one with the one-differen-
tials on M,, that is, {1, = H %(M,,0(K)).

So it is easy to know how many superconformal differ-
entials there are on a split SRS: the dimension of €, is g
(g = genus of M), thus there are g linearly independent odd
superconformal differentials; the dimension of £, depends
on the existence of harmonic spinors on the body. If the spin
structure induced on the body is even, in general there are no
harmonic spinors, so the dimension of {1, is zero. If the spin
structure is odd, £3, has dimension 1 at least.

A more difficult question to answer is how many super-
conformal differentials there are on a nonsplit SRS. If the
induced spin structure has no harmonic spinors, then Eq.
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(5.4) has solution of the type (5.3), certainly at first order
with respect to the filtration of C and probably to all orders.
In this case the number of superconformal differentials is the
same as the split SRS’s.'® In the case of the existence of har-
monic spinors, the space Q is not freely generated and it does
not split into O, + ,.2°

We can give an explicit construction of the g supercon-
formal differentials thus giving a basis of ) for the case of the
spin structure with no harmonic spinors. In fact, we genera-
lize the classical procedure where holomorphic differentials
are generated by Poincaré theta functions. Poincaré theta
functions are Poincaré series®!

> Y @f (r(2),
yel

where f(z) is the function f(z) = 1/(z — a), which has poles
atz = a, 0. Therefore the series will have poles at the analog
via I of these z values.

We call the Poincaré series with the previous choice of f,
£(z,a), and if T, are the generators of the group T, it turns
out that the g functions &, = £(2,a) — §(2,T;a) are auto-
morphic of weight 1, independent by the choice of a, without
poles in the fundamental domain of I" and linearly indepen-
dent, and therefore they define a basis of the space of holo-
morphic differentials, provided that the series £ is conver-
gent.

The convergence of these series can be ensured if the
group T is the Fuchsian group obtained by the Schottky
uniformization of the Reimann surface. We spend few words
on this uniformization which easily extends to SRS’s.
Roughly (all the details can be found in Ref. 22), the mark-
ing of a RS M,, allows one to perform a dissection of M,,
mapped on a multiconnected planar region H which arises
from cutting M, along the cycles b,,...,b,. To any b, corre-
spond two mutually disjoint “circles” (B,,B;) on H. The
a,,...a, cycles correspond to the T',...,T, transformations of
PL(2,R) that map the circles B onto B;. The group genera-
ted by 7,..., T, is called the Schottky group and has H as its
fundamental region. As T'ranges over I' = (T,,...,T, ), the
regions T'(H) fill out the covering surface of M,, N,, without
overlapping. Each of the 7}’s is uniquely defined by its two
complex fixed points and its multiplier k,, that is, three com-
plex parameters. Since N, is defined modulo a transforma-
tion of the complex plane, it is possible to exploit this free-
dom by fixing 3 of the 3g complex parameters of the elements
of the basis, which will now depend on 3g — 3 complex pa-
rameters. For SRS’s the choice of the homology basis
a,,...,b defines g transformations of S L,(C) which generate
a group [ = (T,,.. T ) isomorphic via £ to the Schottky
group of the body I'. Any generator 7, is defined by a point
of C>2, subtracting an overall transformation of C"!, that is,
fixing the fundamental domain of f, we get the (3g -3,
2g — 2) complex supermoduli. From the arguments of Sec.
I11, T has £~ ' (H) as its fundamental domain. Note also that
the choice of the b,...,b, cycles on M has to vary with the
different induced spin structures. Now we define the Poin-
caré super theta function:

Dd.

O(z,%a,a) = 2 - 3.

e S 5.5
Sz —a— (>-3)
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This function depends on a point (a,a) of C"' and it is possi-
ble to show that it is convergent on any domain D of C*!
where the following points are excluded: (a) the point
( —d,/c;,0), namely, the points derivable from the infinity
points by substitution of the group T, including the infinity
points themselves, (b) the infinities of 1/(z; — a — J,a),
that is, the point (a,&) and its analogs via . we prove (5.5)
to be convergent with respect to the finest topology on C*!
[that s, the Rogers one, see (ii) ]. This means that we regard
the series as a vector valued series (on the vector space C™,
m = 2-— 1), thus showing the series to be convergent order
by order. Using definition (3.4) and indexing T with i, we
can rewrite (5.5) as

viz+8, +9 1
&z, —a—da (cz+d)?

The coefficient of (c;z+d;) % is a rational function of
(z,4), and we can say that for (z,9) on D

Wriz+6,)/(z; —a— ﬁfa)”:. <M,

where |||, is the /; norm on C'', and M is a vector of C™.
Therefore

4.
D, — M
I‘S:: ;zi—a—ﬂ,vaH<

Then the convergence of (5.5) follows from the convergence
"

(5.6)

!Z(ciz +d)?

&(z,%a,a) = 1 A

of the series 2; mod(c,z + d;) ~?, which can be proved by
using for I' the same arguments used to prove the conver-
gence of the series =, mod(c;z+d;)™? related to the
Schottky group I'.?2

The properties of the Poincaré super theta function are
summarized in the following proposition.

Proposition 5.1: (i) © is automorphic of weight 1.

(ii) The difference O(z,5;a,a) — O(z,4;T; (a,a)) is in-
dependent of (a,a@) for each i = 1,...,g and it is superanalytic
on e~ '(H). N _

Proof: (i) Let T, be any element of the group T', then,
writing the action of T, by a subscript J, we have

~ D, &, .
T, (z,9)0,@) = Y = iF .
( J( ) ) 2 2 J = a— 19 Ja d
By (4.2) it follows that D, = F,D, where, F, ", 18 just
(c;z+4d;)?
(148, 7,/2)(csz+d,) + 3y, dy —8,¢,)

With a rescaling on the index of the series {written with a
caret), we have the desired result:

DJ

T,z =F, 3 P d=F,0z9) .

Jr 2—a—
{(ii) We write the calculation for the split case and give
the result for the nonsplit one: the ®© for split SRS is

€ (CJZ+dJ)2 (a;z2+ b;)/(c;z4+dy) —a—da/(c,;z+4d;) ’

(5.7

for any T of the form 7 = (4z + B)/(Cz + D), & = ¢ /(Cz + D), we have

O(z,8;T(a,@)) =Y L

3

s (c;z+ dj)z (a,z+ b;)/(c,z+d;) — (4, + BY/(C, + D) —Fa/(c,z+ d;))(C, + D)

19(Ca +D)(CJz+d1)_l

=Je§;‘~ (a,z+b,(C, + D) — (4, + B)(¢;z+d;) — da
HC, + D){Cla,z+ b,) + D(c,z+d,))!

& az+ b, —a(cz+d) -9,
(where a, =a,D — Bc;, b,=b,D— Bd;, c,=Ac;~a,C,
d,=A4d; —b,C=c,=Ca,+Dc,, d,=Cb,+Dd)
4 a+D/C 1

22;' (c,z+d,)* (az+b,)/(c,z+d,)—a—3,(cz+d,) (a,z+b,)/(c,z+d,)+D/C

= @(z,dha,a) - O(z,9; — D/C0) .

For nonsplit SRS the result is
Q(z,0a,a) — O2,8,T, (a,a))

=0(z,d; —d;/c;, — 6:/¢;)

=0,(z8) [T,asin(A4)]. (5.8)
These functions are clearly superanalytic on the fundamen-
tal domain of I', ¢~ !(H) [the poles being inside the circles
£ '(B,;)]. We end up with some remarks about a possible
definition of periodic matrix and Jacobi variety of a SRS.
Formula (5.8) gives a basis of the space of superconformal
differentials on M, if the spin structure induced on the body
is even (with no harmonic spinors). For such SRS's it
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should be possible to define the concept of period matrix and
Jacobi variety on the same lines of the RS case.

We can look at the “periods” of the super theta func-
tions

A =f 0,(2,8)dzdd, B, =f ©,(z,)dzdd. (5.9)
ax by

These integrals are homological invariants for the SRS: by
definition of the integral (see Sec. II), after the Berezin rule,
the resulting line integral depends only on the homotopic
relation of the curve with respect to the singularities of @,
and not on the specific curve. The periods (5.9) could be
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regarded as the entries of the (even valued) periodic matrix
of M, P,,.

After normalization of such periods, the Jacobi variety
of M would be the quotient of C#° with respect to the lattice
generated by P,,. It is possible to make a definitive statement
for the simple case of split SRS inducing an even spin struc-
ture: namely, after the Berezin rule, the periods are

Ay =f Ei (z)dz, B, =J E,.(z)dz,
a; k,

where £; results the function defined by £; via the formula
(2.2). The singularities of £, are those of £; and by the for-
mula (2.3) we have that the lattice generated by P,, has only
the body components latticized and the rest is continuous.
That is the Jacobi variety of M: J(M) = C*° /P,, turns out
to be a de Witt supermanifold with the body of the Jacobi
variety of its body M,, (as expected).
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It was proposed earlier [P. L. Sachdev, K. R. C, Nair, and V. G. Tikekar, J. Math. Phys. 27,
1506 (1986); P. L. Sachdev and K. R. C. Nair, ibid. 28, 977 (1987)] that the Euler-Painlevé
equations y(d’y/dn®) + a(dy/dn)? + fm)y(dy/dn) + g(n)y* + b(dy/dn) +c¢=0
represent generalized Burgers equations (GBE’s) in the same way as Painlevé equations
represent the Korteweg—de Vries type of equations. The earlier studies were carried out in the
context of GBE’s with damping and those with spherical and cylindrical symmetry. In the
present paper, GBE’s with variable coefficients of viscosity and those with inhomogeneous
terms are considered for their possible connection to Euler-Painlevé equations. It is found that
the Euler-Painlevé equation, which represents the GBE u, + vfu, = (6/2)g(t)u,,,
g(1) = (1 4+ )", B> 0, has solutions, which either decay or oscillate at 7 = + oo, only when
— 1 < n < 1. The solutions are shocklike when n = 1. On the other hand, they oscillate over the
whole real line when n = — 1. Furthermore, the solutions monotonically decay both at
7= + o and 7 = — oo, that is, they have a single hump form if 838, = (1 — n)/(1 + n).
For B < B,, the solutions have an oscillatory behavior either at 7 = + o orat 7= — 0, orat
7= 4+ o and 7 = — . For B = f3,, there exists a single parameter family of exact single
hump solutions, similar to those found for the nonplanar Burgers equations in Paper II. Thus
the parametric value # = 8, seems to bifurcate the families of solutions, which remain
bounded at 7 = + . Other GBE’s considered here are also found to be reducible to Euler—
. Painlevé equations. The scope of these equations is broadened by relating them to a large
number of nonlinear DE’s selected from the compendia of Kamke [ Differential Gleichungen :
Lbsungsmethoden und Losungen (Akademische Verlagsgesellschaft, Leipzig, 1943)] and
Murphy [Ordinary Differential Equations and their Solutions (Van Nostrand, Princeton, NJ,
1960) ]. These latter equations arise from a wide range of physical applications and are of some
historical interest as well. They are all special cases of a slightly generalized form of the Euler—

Painlevé equation.

I. INTRODUCTION

In Papers I and II (Refs. 1 and 2, respectively), we pro-
posed that the generalized Burgers equations (GBE’s) are
characterized by a class of nonlinear ordinary differential
equations (ODE’s), which we called Euler-Painlevé equa-
tions, in the same manner as the Korteweg—de Vries equa-
tions are typified by the Painlevé equations. These ODE’s
result from the self-similar reduction of the GBE’s. We stud-
ied, in particular, the equations

u, + tPu, + Au" = (6/2)u,, (1.1)
and
u, + uu, + (ju/2t) = (8/2u,, . (1.2)

The self-similar forms of Egs. (1.1) and (1.2), after some
further transformations, are special cases of the nonlinear
ODE’s,

W'+ ay?+fx)yy +8(xX) + by +¢=0, (13)
which we referred to as the Euler—Painlevé equation.

In the present paper we continue our study of GBE’s
and their connection with the Euler-Painlevé equation
(1.3). We consider here the GBE with a variable coefficient
of viscosity, .

u, + uPu, = (6/2)g(t)u,, , (1.4)

where 8 is real and positive and g(¢) is a smooth function.
Scott® has studied a special case of (1.4) in the form
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U, —uu,=g(x)u,,, (1.5)

where the roles of x and 7 are reversed. In (1.5) tis a retarded
time, x is a rangelike variable, u is an acoustic variable, with
the linear effects of changes in the duct area taken out, and
g(x) is a positive function that depends on the particular
duct chosen. More precisely, if R is the range along the duct
area, then

t=T—R/c,, u=a'%,
(7+1)f 172

XxX=—t——-]a (R) dr,
243

and
g(x) =8a"*(R)/(y + 1c,,

where ¢, is the sound speed, ¥ is the adiabatic exponent, and
& is the diffusivity of sound that measures the combined ef-
fects of the viscosity and the thermal conductivity of the
medium. The boundary condition appropriate to a piston or
loudspeaker in the duct is

u(0,t) = uy(t) . (1.6)
The problem (1.5) and (1.6) also occurs in the treatment of
spherical and cylindrical nonlinear sound waves, in which
g(x) has the particular forms g(x) = ¢* and x, respectively.
Scott studied, in particular, strictly self-similar solutions of

the form u = Q(¢/x). He considered the intermediate
asymptotic behavior of three kinds of self-similar solutions
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of (1.5), depending on the nature of the function g(x).
When g(x) = x, Eq. (1.5) is called cylindrical. In this case,
the self-similar solution ( (¢ /x) that tends to constant values
as t— + oo forms an intermediate asymptotic: the solution
of (1.5) with g(x) ~x as x— « and with any continuous
initial condition #,(¢) having constant asymptotic values
evolves towards the similarity solution for large x. Thus the
solution u = (z /x) is very stable. For the situation g(x)/
X - 0o a8 X— oo, the supercylindrical situation such as in the
spherically symmetric case, the limiting form of « is an error
function that is a solution of the linearized problem. Finally,
ifg(x)/x—0 as x— «, the case Scott has referred to as sub-
cylindrical, the limiting nonlinear self-similar solution
u = E(t /x) is shown to be an expansion front, consisting of
straight line segments. Scott gives a rigorous analytic proof
to show that the above solutions form intermediate asympto-
tics (see Barenblatt! and Sachdev®).

Westudy Eq. (1.4) instead of Eq. (1.5) to conform with
our earlier work and the notation used therein. In particular,
we assume that g(¢) = (1 + ¢)". We find that the solutions
which either decay or oscillate at x = 4 o exist only in the
range — 1<n<1. More specifically, the solutions decay at
x=+ wandx= — w0 iff>2B, = (1 —n)/(1 + n),while
they have an oscillatory behavior either at x = + oo or
X= — worbothatx = 4+ o andx = — « iff<f,. For
B = B,, there exists a single parameter family of exact single
hump solutions, similar to those found for the nonplanar
Burgers equation in Paper II. Thus the parametric value
B = B, seems to bifurcate the families of solutions that re-
main bounded at x = + oo.

Here again we find that the inverse function H [see Eq.
(2.3)] is governed by a special case of the Euler-Painlevé
equation (1.3). Scott’s cylindrical solution is identified as a
special case of our Eq. (1.4). In the terminology of Scott, the
solutions of Eq. (1.5) with a general nonlinear convective
term exist for the subcylindrical case only. It may be empha-
sized that while Scott’s solutions are strictly self-similar, our
solutions decay explicitly with time except when n = 1. As
pointed out by Scott, the self-similar form of supercylindri-
cal solutions derives from the linearized equation; therefore,
the correspondence to the Euler—Painlevé equation does not
exist in this case.

We also give here two other GBE’s: the inhomogeneous
Burgers equation and the GBE with a variable coefficient of
viscosity, depending exponentially on time. While both
equations can be reduced to the Euler-Painlevé form, physi-
cally relevant solutions exist only for the former. These solu-
tions represent sawtooth form.

In this paper, we also refer to a set of ODE’s in the
compendia of Kamke® and Murphy’ that are either special
cases of the Euler-Painlevé equation (1.3) directly or are
special cases of a generalized form of (1.3), in which the
coefficients are made to vary with the independent variable.
This brings Euler-Painlevé equations in contact with a
much larger class of DE’s which have appeared in diverse
applications quite fortuitously.

The scheme of the paper is as follows: In Sec. II, we
derive the nonlinear ODE for self-similar solutions, analyze
it, and find its special exact solutions; we also pose the con-
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nection problem for the same. In Sec. III, we solve the con-
nection problem numerically. In Sec. IV, we discuss the evo-
lution of the single hump initial profile under the governance
of the nonlinear partial differential equation to its intermedi-
ate asymptotic form. In Sec. V, we consider other GBE’s and
their (possible) connection to Euler—Painlevé transcen-
dents. In Sec. VI, we give the equation numbers of ODE’s
related to Euler-Painlevé transcendents included in the
compendia of nonlinear ODE’s by Kamke® and Murphy.’
Finally, the conclusions of this study are contained in Sec.
VIL

Il. ANALYSIS OF SELF-SIMILAR SOLUTIONS-EULER-
PAINLEVE TRANSCENDENTS

As in Paper I, we seek self-similar forms of solutions of
Eq. (1.4) with g(¢) = (1 + #)" (n is a parameter) in the
form

u= (1+0*F(&), &=1+1"x, (2.1)

where a, and b, are real constants, and determine the values
of the parameters £ and n for which self-similar solutions of
Eq. (1.4) exist satisfying certain asymptotic conditions at
X = + w. Substitution of (2.1) into (1.4) shows that,
for the similarity form, a,= — (1—#n)/28 and
b= — (1+n)/2. With the scaling f=8§?F and
n = 8" Y2£, Eq. (1.4) reduces to

S =25+ A +mnf' + (1 —n)/B1f=0, (22)

where a prime denotes differentiation with respect to 7. The
inverse function

H=f"# (2.3)
satisfies the equation
HH" — [(B+ 1)/B1H"” + (1 + n)yHH'
—(1=—n)H?*-2H'=0. 2.4)

Equation (2.4) is a special case of (1.3) with
a= —(1+B8)/B, fx)=1+n)x, g(x)=—(1—n),

= — 2, and ¢ = 0. We find the range of the parameter n,
for which single hump type solutions exist for Eq. (2.2). At
the maximum of the hump, /' = 0and f” <0. Therefore, a
necessary condition for the single hump solutions to exist is
that n < 1. We derive later in this section a more restricted
range of the parameter n for which solutions satisfying
asymptotic conditions exist. We first seek some exact solu-
tions of (2.2). For

B=0—-n)/1+n)=8,, 2.5)
say, Eq. (2.2) assumes the form
f"=25"+ 270+ B (nf" +f)=0. (2.6)

Integrating (2.6) once and using vanishing conditions at
77— + «, we get

=12/ 4B P+ [2/(0+B)]Inf=0.
Integrating again, we have
f(ﬂ) — e[—- 171 +ﬂ)]7]2h —_ 1/3(17) R

where

2.7)
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h(n) =A— (2m)"?erf[ (m/2)"?9],

2.8)
A=f"%0) and m=28/(1+48).
Correspondingly,
H(np) = e[B/(l—o—ﬁ)lﬂ’h(,’) (2.9)
and
u(x,t) =881 1)~ VO +Bl-10 +87p —1/3(1’) ,
(2.10)
p=86""2(140n " VI*Px. (2.11)

For general n and 8 we seek the Taylor series solution for Eq.
(2.4), namely,

H(n) = i an.
r=0

The coefficients a, , ,, r = 1,2,..., are found by substituting
(2.12) into (2.4),

L [(’3+1a1+z)(1+r)a,+,

(2.12)

T T TN+ 2l B

+(1=nmaw, + 3 (r+1—z')a,+,_.-[’3—;;l

i=1
><(r+i—2)a,+,-_2—(1+n)a.-_x]
~ 3 a{(r+2-0(r+1-Da,,._,
i=1

—(1- n)ar_i}] , (2.13a)

a, = (1/2a,) [([(B+ 1)/B1a, + 2)a, + (1 —n)a}] .
(2.13b)

Thus we have a two-parameter a,, a, family of solutions. For
m=1—n=28/(1+pB), the parameter a, = — m. This
special choice corresponds to the exact solution (2.9). The
free parameter a, gives a single parameter family of solu-
tions. This could either be the amplitude parameter or the
Reynolds number

R -—

1 o0
- dx,
5_L“ X

which is the ratio of the area under the profile to the coeffi-
cient of diffusivity of sound.

We now investigate the linear behavior of Eq. (2.2) un-
der the conditions f, f'—~0as 7— + « and pose a connec-
tion problem over the interval — o0 <7 < o0. The linearized
form of Eq. (2.2) is

"+ 4+mnf"+[(1=n)/Blf=0. (2.14)
The change of variables

fp =y, z= —[(1+n)/2)yp (2.15)
transforms (2.14) into

"+ —-2)y —ay=0, (2.16)

where a = (1/28)(1 — n)/(1 + n). The solution of Eq.
(2.16) is the confluent hypergeometric function ¢(a,;z). It
vanishes as 7— + o« asymptotically only when a > 0. This
requires that |n| <1. For B=(1—n)/(14+n), a=1,
p(44;2) = &€ =€l ~ 1+ M/2A7 i an exact solution of Eq.
(2.14). We pose the connection or boundary value problem
for Eq. (2.2), namely,
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"=+ U +nnf + [0 -n)/B1f=0,
f~Adlat; — [(1 +n)/2]17%), as|y(tew,  (2.17)
|f|<oo, — 00 <N<w.

It is interesting to observe the behavior of the solutions of
Egs. (2.2) and (2.4) for the limiting values — 1and + 1 of
the parameter n. For n = 1, Egs. (2.2) and (2.4) assume the
forms

f" =25 +29f' =0, (2.18)
HH" —[(1+B)/BIH? +2yHH' —2H' =0, (2.19)

where f= A, a constant, and H = 4 ~ '/# are special solu-
tions of Eqgs. (2.18) and (2.19), respectively. The linearized
form of Eq. (2.18), namely,

f"+2f' =0, (2.20)
has the solution
fp) = QB /7' Herf g, (2.21)

where B = f(0) is the amplitude parameter. For n = — 1,
Eq. (2.2) becomes

ST =25+ (2/B)f=0. (2.22)
The linearized form

f"+2/B)f=0 (2.23)
has an oscillatory type of solution

f=Bcos(2/B)'"*y. (2.24)

The parametric value 8= B, [see Eq. (2.5)] seems to
bifurcate the types of solutions of Eq. (2.2) for — 1 <n <0.
The transformation

f) = el— 1+ n)/4]1fs(17) (2.25)
reduces the linear equation (2.14) to the form

5"+ 1q(q)s=0, (2.26)
where
g(m) = (4/BY(1 —n) = 2(1 +n) — (1 +m)*p*. (227)

(i) ForB=p, = (1 — n)/(1 + n), the right-hand side
of Eq. (2.27) becomes

214+n) — A +n)p*=r(y), (2.28)

say. In the linear regime |9|>7%,, where 1,
= [2/(1 + n)]"?, r(n) <0, and therefore, s(7) decays ex-
ponentially as 7— + o0.
(ii) For B > B n
—(1+n)]<0.

Therefore, g(7) <r(n) <0 for 5 <n,. Again in this
case, s(7) decays exponentially as 7— + oo.

(i) For B<B,, () > (1 +m{2— (1 +n)n?]>0
for || <7, < co.

This suggests oscillatory solution of Eq. (2.2) for
|7} <9,. [In Sec. II1, we confirm these results by numerical
integration of Eq. (2.2).] In fact, it is interesting to note that
for the limiting case n = — 1, B8, = oo, the solution of Eq.
(2.2) is purely oscillatory in the interval — o0 <7 < .

We now summarize the similarity solutions found by
previous investigators®® for some specific values of the pa-
rameters 7 and . Sachdev® discussed the self-similar solu-
tion of the equation

q(n) —r(ng) =4[{(1 —n)/B)
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u, +uu, = (6/2Y(1+u,, . (2.29)
The self-similar form of Eq. (2.29) was sought in the form
u=f(§), §=x/(1+0). (2.30)

The resulting equation after suitable transformations was
reduced to a second-order linear ODE whose solution in the
physically interesting case was

u= +{(26)[ — S+ S, 2S-W}2 4 ¢,

5=7+(£)"2fs L 45, s»s,
2 s, H(S) o’

where S, is a parameter. The solution (2.31) has two con-
stant parameters, ¥ and S,. While ¥ can assume any value,
the parameter S, can vary only between —} and + .

(2.31)

I1l. NUMERICAL SOLUTION OF CONNECTION
PROBLEM (2.17)

The connection problem (2.17) was solved by numeri-
cally integrating the first equation in (2.17) starting from
7 = 7, such that £ and f’ are small O(10~3) and continu-
ing the solution to 7— — oo for all >0 and |n| < 1. There
are three varieties of solutions: (i) pure single humps, (ii)
single humps ending with an oscillatory tail at one end, and
(iii) solutions with oscillatory tails at both ends. Initial con-
ditions were obtained from an asymptotic form of the conflu-
ent hypergeometric function for large %. In the linear regime,
77> 17,, the behavior of the nonlinear equation (2.2) was
compared with that of the linear equation (2.14) to assess
the validity of the asymptotic solution. For 5> 17,, the
asymptotic solution of the confluent hypergeometric func-
tion agrees very closely with the numerical solution of the
linear equation (2.14) and with that of the nonlinear equa-
tion (2.2) (see Table I). The solution of the linear equation
continues to agree with that of the nonlinear one for 7 < 7,
and then begins to depart from it (see Fig. 1). Numerical
solution of the nonlinear equation was checked with exact
analytic solution (2.7) for special values of the parameters.
The values of H and H' at 5, were also calculated from a
known linear solution of Eq. (2.14) and the relation (2.3).

Solution of linear ODE (2-14)

Selution of nonlinearODE (2.2)

FIG. 1. Solutions of linear equation (2.14) and nonlinear equation (2.2) for
B=1n= —-01.

The series (2.12) for H was then summed up in the interval
— o < <1, < w. Corresponding values of f were re-
trieved using (2.3) and compared with the numerical solu-
tion of the connection problem and the exact solution (2.7)-
(2.11). All these solutions agree very well (see Table II for
the three solutions for n = — 0.6, 8 = 4). For the paramet-
ric ranges O <n <1 and 8>1, Eq. (2.17) has single hump
solutions either vanishing at 7 = + « or vanishing at
7 = + o and tending to a nonzero constant at — oo [see
Fig. 2 for solution of Eq. (2.2) for #=1, n=0, 0.25, 0.5,
0.9]. These types of solutions were also found in the range
— l<n<O0for B>p, [see Fig. 3 for solution of Eq. (2.17)
forn = — 0.8, 8=11]. As predicted in Sec. II, the linear
solution for S <, and — 1 <n <0 has an oscillatory tail
either at one or at both ends characteristic of Eq. (2.26)
when g(7) >0. The amplitude of the oscillatory tail in-
creases and approaches that of the main hump as n—1 (see
Figs. 4 and 5). The series solution for this limiting case does
not converge at points where H— «o corresponding to f—0.

TABLE II. Exact solution, numerical solution, and series solution of Eq.
(22)forn= —06,=4,6=001,¢=5.

Exact Numerical
solution solution Series solution
Hi
TABLE 1. Comparison of solutions of linear equation (2.14) and nonlinear K s s ) A

equation (2.2), and the asymptotic form of Eq. (2.16) for n = — 0.75, 5.0 0.000 6738 0.000 6739 © 0.000 6739

B=3. 45  0.001 7423 0.001 7424 P 0.001 7424

40  0.004 0764 0.004 0766 © 0.004 0766

Linear equation Asymptotic equation Nonlinear equation 3.5 0.008 6297 0.008 6301 © 0.008 6301

7 (2.14) (2.16) (2.2) 3.0 0.016 5306 0.016 5311 13390217.00 0.016 5311

25 0.028 6517 0.028 6526 1483 698.00 0.028 6526

2.33 0.008 978 0.008 978 0.008 978 20 0.044 9347 0.044 9361 245256.10 0.044 9360

2.23 0.057 410 0.057 409 0.057 410 1.5 0.063 7653 0.063 7672 60480.08 0.063 7671

2.13 0.108 274 0.108 273 0.108 271 1.0 0.0818758 0.081 8781 2224998 0.081 8781

2.03 0.161 272 0.161 271 0.161 250 0.5 0.095 1249 0.095 1275 12211.70  0.095 1275

1.93 0.216 063 0.216 062 0.215974 0.0 0.100 0002 0.100 0028 9998.87  0.100 0028

1.83 0.272272 0.272272 0.271 995 —-05 0.095 1213 0.095 1238 12213.60 0.095 1238

1.73 0.329 489 0.329 489 0.328 778 - 1.0 0.081 8707 0.081 8727 22255.83  0.081 8727

1.63 0.387 272 0.387 272 0.385 694 - 15 0.063 7606 0.063 7621 60499.27  0.063 7620

1.53 0.445 153 0.445 154 0.442 013 —20 0.044 9312 0.044 9323 245339.67 0.044 9322

1.43 0.502 647 0.502 647 0.496 918 —-25 0.028 6494 0.028 6500 1484229.00 0.028 6500

1.33 0.559 250 0.559 251 0.549 527 —3.0 0.016 5293 0.016 5296 13 395316.00 0.016 5296

1.23 0.614 452 0.614 453 0.598 963 —35 0.008 6290 0.008 6291 © 0.008 6292

1.13 0.667 741 0.667 742 0.644 280 —4.0 0.004 0761 0.004 0761 © 0.004 0761

1.03 0.718 610 0.718 611 0.684 792 —45 0.001 7421 0.001 7421 o 0.001 7421

0.93 0.766 563 0.766 564 0.719 870 - 5.0 0.000 6738 0.000 6737 © 0.000 6738
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n=09

FIG. 2. Solution of the connection problem (2.17) for B=1,
n =0,0.25,0.5,0.9.

Analytic continuation at such points was not feasible as the
coefficients (2.13) of the series (2.12) become very large
resulting in overflow of the partial sums of the series (2.12).
This happens whenever f crosses the 7 axis. At other points
the series (2.12) converges to the exact solution of Eq. (2.4).

Equations (2.18) and (2.22) were also solved for limit-
ing values n = 1 and n = — 1, respectively. For the former,
starting with the initial condition f=const at n =17,
monotonic shocklike solutions were obtained. For the latter,
starting with initial condition (2.24) at = #,, pure oscilla-
tory solutions were obtained (see Fig. 5).

IV. NUMERICAL SOLUTION OF THE GBE (1.4) AND
INTERMEDIATE ASYMPTOTICS

Equation (1.4) was solved subject to the initial condi-
tion

(4.1)

where the function s(x) is a smooth single hump. We used
the implicit predictor—corrector scheme since the initial pro-
file is smooth. The details of the scheme were reported exten-
sively in Paper I. We consider the evolution of the initial
profile into self-similar form for the following ranges of the
parameters 7 and S.

(i) —1<n<0, f>8,. In this case, the initial profile
evolves to diffuse and goes into the self-similar form. Figures
6(a) and 6(b) show the evolution of the initial profile under
the governance of Eq. (1.4), whereas Figs. 7(a) and 7(b)
show the evolution of the initial profile into self-similar form

u(x,t;) =s5(x), —ow<x<ow,

=«0-01

FIG. 3. Solution of the connection problem (2.17) for n= — 0.8,
B=1,27,11

2401 J. Math. Phys., Vol. 29, No. 11, November 1988

-0-01

{b)

FIG. 4. Solution of the connection problem (2.17) for (a) =1,
n=—02,—-03;(b)n= —09,8=2,5.

for the parametric valuesn = — 0.6,f=2andn = — 0.5,
f=4

(ii) 0<n <1, B> 1. The evolution of the single hump
initial profile into its self-similar form takes place as in case
(i) above.

(iii) — 1 <n<0,8< B,. Inthis case, the solution of Eq.
(1.4) starting from the initial profile (4.1) breaks at the
front [see Fig. 6(c) ]. The similarity solution (2.1) does not
form an intermediate asymptotic; in this case, it may be re-
called, the solution of the connection problem (2.17) con-
tains oscillatory tails and the series (2.12) does not converge
near zeros of f(7).

V. OTHER GBE’s, THEIR SELF-SIMILAR FORMS, AND
SOLUTIONS

We consider two other GBE’s, namely,
u, +uu, = (6/2)e™u,, ,
and
u, + uPu, = (8/2)u,, + 3t"g[x(26t)""?], B>0,
(5.2)

a>0, (5.1)

FIG. 5. Solution of the connection problem (2.17) forf=1,n = ~ 1,0,1.
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(a)

S -1

(©

ha }

FIG. 6. Solution of the nonlinear PDE (1.10) for (a) n= - 0.6, §=2,
5§=001;(b)n= —05,=4,6=001;(c)n= --09,=1,6=0.01.

and study their self-similar solutions and (possible) connec-
tion to the Euler-Painlevé transcendents. For the former,
the similarity transformation corresponding to (2.1) is

u= (6emt)l/2af(n) , 1]=x(6e”")_”2. (53)
The resulting equation
=2 +myf’ — (m/a)f=0 (5.4)

has a single hump type of solution if, at the maximum,
f"=(m/a)f<0. (5.5)

A necessary condition for this is that m <0, since we have
assumed that a > 0. We now look into the linear behavior of
(5.4) for large 5. The linearized form

S"+myf’ — (m/a)f=0 (5.6)

has the confluent hypergeometric function ¢( — 1/2a,};2)
as one solution, where z = — (m/2)7%> For a solution van-
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FIG. 7. Solution of the nonlinear ODE (2.17) for (a) n= — 0.6, 8=2;
(byn= —05F8=4.

ishing at 7 = + o0, a should be negative. This contradicts
the requirement for a single hump type of solution discussed
above. However, the transformation

H= f -« (5.7)

does give a representation of Eq. (5.4) in the Euler-Painlevé
form, namely,
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HH" — [(a+ 1)/alH? —myHH' —2H' + mH?=0.
(5.8)

The inhomogeneous Burgers equation (5.2) has a similarity
form

u=1t""*f(9), p=x2607"2, (5.9

provided ¥y = — (1 + 1/283). The corresponding equation
for f is

fr—4Q8)"VEf + 29f + (2/B)f+8(1) =0.

(5.10)
The inverse function
H=§"2f-8 (5.11)
satisfies the equation
HH" — [(B+1)/B1H* + 29HH' — 2>/*H"’
—2H*— B~ Vg(q)H+*VP =0. (5.12)

Equation (5.12) does not belong to the class of Euler—Pain-
levé equations, since the last term in it contains a higher
degree term in H. However, we shall present here some exact
solutions of (5.2) found earlier (see Sachdev!®) for some
special choice of the parameters and the function g in Eq.
(5.2). For this purpose we scale out § and write Eq. (5.2) in
the simpler form (withf=1)

u, +uu, =u, +3tg(x,) . (5.13)
We consider the following cases.

Dy=—38=—nn9=xt""2 (5.14)
With the transformations

u=t""%f(y) (5.15)
and

H=f"1, (5.16)

the equations correspoflding to (5.10) and (5.12) are

fr=fF +inf +4f—in=0 (5.17)
and
HH" —2H"? + \npHH' —~ H' —}H*+ \nH>=0. (5.18)
Equation (5.13) has exact solutions

u=x/2t (5.19)
and

u=(x/2t) — (2/x) . (5.20)

Solution (5.19) is the sawtooth form shown in Fig. 5 of Ben-
ton and Platzman'! (BP) and (5.20) corresponds to (3.5)
of BP. Corresponding solutions of Egs. (5.17) and (5.18)
may be found. Thus

f=in (5.21a)
and

f=4n—-2/7 (5.21b)
are the solutions of Eq. (5.17), and

H=2/y (5.22a)
and

H=2/(9*—-4) (5.22b)
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are those of Eq. (5.18).

(ii)y= —3 g=R(n), n=x/2"2. (5.23)
The transformation

u=t""2(f+17) (5.24)
changes Eq. (5.13) into

" =2+ R(n)+27=0. (5.25)

This equation can be put in the standard Riccati form

9 2
L-r f(2n+R(n))dn-

These similarity solutions correspond to (3.1’) of BP, shown
in their Figs. 9-11 and describe solitary compression pulses
(Lighthill'?).

(5.26)

VI. EQUATIONS RELATED TO EULER-PAINLEVE
TRANSCENDENTS—COMPENDIA OF KAMKE AND
MURPHY

It is interesting to note that there is a large number of
nonlinear DE’s of second order, listed in Kamke® and Mur-
phy,” which form special cases of (1.3), directly or after
some simple transformations. We list here the equation
numbers of these and other DE’s which are special cases of
(1.3) if we allow the coefficients a,b,c to vary with x. Kamke
has appended some historical notes with each of these equa-
tions and has also given their geometrical or physical origin.
Here, we content ourselves with listing the equation
numbers. We note that a few common features characterize
this set of equations: the equations are either autonomous or
are linearizable by a logarithmic or a power law transforma-
tion, or they may be reducible to first-order equations such
as Riccati and Bernoulli. The equations may be solved in
closed form in terms of a quadrature or treated in the phase
plane.

The following DE’s are from Kamke®: 6.104—11, 6.117,
6.122,6.124-27,6.129,6.131, 6.133-34, 6.136-39, 6.150-52,
6.155-58, 6.164, 6.166, 6.168-70, 6.173-79 (41 equations).

The following DE’s are from Murphy’: 129-30, 133,
138, 140, 142, 150, 190, 195, 199, 201, 2034, 219-22, 227-
31, 233-34 (24 equations).

VIl. CONCLUSIONS

The present paper extends our earlier studies on gener-
alized Burgers equations in Papers I and II to encompass
GBE’s with variable coefficient of viscosity and inhomogen-
eous Burgers equations. The latter equations are also shown
to reduce to Euler—Painlevé form. The GBE with the (time)
power law coefficient exhibits new behavior not found ear-
lier for nonplanar GBE or GBE with damping. There exist
solutions in addition to single hump type, which oscillate
either at x = + o0 Or at x= — o or at x= + o and
X = — oo. The transition to oscillatory behavior takes place
when the parameter S, the degree of nonlinearity in the con-
vective term, assumes a definite value equal to (1 —n)/
(1 4 n) [see Eq. (2.5)]. We also find some exact solutions
for special cases of the GBE’s considered in the present pa-
per. The scope of Euler—Painlevé equations is considerably
enlarged by juxtaposing them with a large number of nonlin-
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ear DE’s garnered by Kamke® and Murphy’ from different
sources and applications. It would seem, therefore, that the
generalized Euler-Painlevé equations {Eq. (1.3)] have a
larger role to play in a variety of applications than would be
suggested by GBE’s alone.
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This paper continues our systematic study of unbounded commutants within the framework of
operators on a partial inner product (PIP) space. The most general commutant of a set of
operators on a PIP space is considered and its behavior with respect to a topology finer than
the weak and quasiweak *-topologies used in previous investigations is studied. The
relationship between a bicommutant introduced by Shabani and a bicommutant introduced by
Araki and Jurzak for closed Op*-algebras satisfying some countability conditions is given.

1. INTRODUCTION

In recent years unbounded commutants were analyzed
by many authors,'~"" both from the mathematical point of
view along the lines of the usual theory of W*- and Op*-
algebras, and for their applications in quantum field theo-
ries.

In Refs. 10 and 11 a general theory of unbounded com-
mutants is developed using the framework of operators on a
partial inner product (PIP) space'*!? and some of the re-
sults of Refs. 1-9 are extended to their general case.

This paper continues the systematic study of unbounded
commutants started in Refs. 10and 11. Let ¥ be a PIP space
and m be an *-invariant subset of the space Op ¥ of all opera-
tors on V. We will define the commutant of m as being the
subset m’ of all operators of Op ¥ that commute with m (see
Sec. II for definitions). This commutant is the most general
one for a set of elements of Op V. We will also be concerned
with the bicommutant m” and we will study topological
properties of both m' and m” with respect to a topology finer
than the weak and quasiweak *-topologies used in Refs. 10
and 11.

The paper is organized as follows. In Sec. II, following
Refs. 12-15 we recall briefly the basic properties of PIP
spaces and operators on them. Let m be an *-invariant subset
of Op V. We define on the space Lm of all left multipliers of
m (resp. the space Rm of all right multipliers of m) the
locally convex topologies # (m) and ¢ (m) [resp. ¢ (m)
and ¢ (m)] and prove some sequential completeness prop-
erties of Op ¥, Lm, and Rm with respect to these topologies.
In this section we also define the commutant and bicommu-
tant we will study in this paper and compare them with those
introduced in Refs. 1-11.

In Sec. III after noting that the four topologies defined
on Lm and Rm coincide on the commutant m’ [we denote
this topology by #(m) ], we investigate the topological prop-
erties of m’ (resp. m") with respect to the #(m)-topology
[resp. the t(m’)-topology]. In particular, we show that m' is
closed in LmM Rm with respect to the #(m)-topology and
similarly for m” in Lm’NRm’ with respect to the t(m’)-
topology. Thus here these topologies seem to play the role of
the weak topology for bounded operators. In this section we
also prove under the assumption of reflexivity of the dual
pair (¥ # V') that m’ is t(m) sequentially complete.

) On leave of absence from the Department of Mathematics, University of
Burundi, B.P. 2700 Bujumbura, Burundi.
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In Sec. IV we answer the following question: When is
our bicommutant the closure of the original set of operators
with respect to the (m’)-topology? We give a sufficient con-
dition yielding this resuit.

Section V provides a comparison of our bicommutant
with a bicommutant (to be denoted by m/,) introduced in
Ref. 4 for closed Op*-algebras satisfying some countability
conditions. We show that our bicommutant is contained in
the bicommutant of Ref. 4.

An analogous comparison for commutants was carried
out in Ref. 10 where the equality m’ = m/, = m_ = m_, was
obtained. Here m. denotes the strong unbounded commu-
tant,'* whereas m, stands for the weak unbounded commu-
tant.S,S

Il. THE PARTIAL *-ALGEBRA OF OPERATORS ON A
PARTIAL INNER PRODUCT (PiP) SPACE

A. Abstract partial *-algebra (Refs. 16 and 17)

Definition 2.1: A partial *-algebra is a complex vector
space U with an antilinear involution x»—x* and a subset
'C U X Usuch that:

(i) (xp)e I iff (y*,x*)el’;

(ii) if (x,p)€l’ and (x,z)€l, then (x,Ay + uz)el’, for all
AueG

(iii) whenever (x,p)€erl’, there exists an element xpeU
with the usual properties of product:

x(y+A2) =xy + A(x2), (xp)* =p*z*.

Definition 2.2: Let m C U. We define the set of left multi-
pliers of m by

Lm = {xeU |(x,p)€T, for all yem}.

Similarly the set of right multipliers of m is given by
Rm = {xeU|(y,x)el", for all yem} .

In particular, for single elements we have
L(z)=L{z} and R(z)=R{z}.

This suggests the simpler notation,

(x,y)el’ & xeL(p) < yeR(x) .

Definition 2.3: A vector subspace mCU is called a
*-subalgebra of the partial *-algebra U if the following con-
ditions are satisfied:

(i) m contains the identity;

(ii) m is *-invariant, i.e., xem implies x*em;
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(iti) if x,yem and xeL(y), then xyem.

As pointed out in Ref. 18, for partial *-algebras, the
usual definition of associativity is rarely realized in practice.
However, for most purposes, a weaker concept is sufficient.

Definition 2.4: The partial *-algebra U is called semias-
sociative if for any x,y,zeU such that yeR (x) and zeRU the
following conditions are satisfied:

(1) yzeR(x);

(ii) (xpy)z = x(yz).

B. Operators on a PIP space

1. Basic properties

A PIP space'>™'> consists of a complex vector space V, a
nondegenerate Hermitian form (- |- ), and a family of vector
subspaces {¥,, rel} satisfying the following conditions.

(i) Thefamily .¥ = {V,, rel} covers ¥ and is an involu-
tive lattice with respect to set intersection, vector sum, and
involution #: ¥V, <> V.. Besides elements of ., we consider
also the extreme spaces

V#=NV, and V= UV,.
rel rel

(ii) The Hermitian form (-|-), called the partial inner
product, is defined on U, V, X V5.

(iii) ¥ possesses a central Hilbert space, i.e., there exists
an element 0 = 0 in I such that V, = V,; =77 is a Hilbert
space with respect to {-|+).

The assumption of nondegeneracy (¥ #)' = {0} im-
plies that every pair {V,,V; ) as well as { ¥ # V') is a dual pair
with respect to (-|-). Therefore each ¥, may be endowed
with its canonical Mackey topology 7(¥,,¥;) and similarly
for V#,V. This choice implies the following.

(i) Whenever V,CV,, the embedding E_,: V, >V, is
continuous and has dense range.

(ii) ¥ ¥ isdensein every ¥, and every V, is dense in V.

An operator'® on the PIP space Visamap 4: Z (4) -V,
where & (A) is the largest union of subspaces ¥, such that
the restriction of A to any of them is linear and continuous
into V. Such operators may be extremely singular, since the
range of 4 |, may be much larger than the central Hilbert
space 57, Yet every operator 4 has an adjoint 4 *, which is
also an operator on ¥, and the correspondence 44 > isan
involution on the set Op V of all operators on V. The set
Op V is a vector space but not an algebra (it is a partial
< algebra'®'7); two operators 4 and B may always be add-
ed, but their product 4B is defined only if there is a contin-
uous factorization through some V,

B A
VELY, SV,

An operator AeOp V is called regular'® if 2 (A4)
= Z (A% ) = V; equivalently, if 4 maps both ¥# and V
into themselves continuously. It is well known that
equipped with the involution A<«»A4 *, where 4 *is there-
striction to V¥ of the adjoint operator 4 ¥, theset Reg V'
of all regular operators on Vis a *-algebra, isomorphic to an
Op*-algebra,” i.e., a *-sublagebra with unit of the algebra
L *(V#) of all closable operators on 5%°, which together
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with their (Hilbertian) adjoint leave ¥'# invariant. The
space Op ¥ contains another remarkable subset, namely,

C(V*#,97) ={Aclosable in |V *C D (A)ND (4*)}
—{4e0p V4,4 % VF_ 7).

We have Reg VCC(V#,#)COp V.

We will assume that V is quasicomplete in its Mackey
topology. This implies in particular that Reg V' is isomor-
phictoL *( V# );seeRef. 19, Proposition 2.5. The condition
of Mackey quasicompleteness of V is actually satisfied in
almost all examples; the only known exceptions are patho-
logical.?!*?

Proposition 2.5: The space Op V is semiassociative.

Proof: Let A,B,CeOp V be such that BeR(A) and
CeROp V. We recall that ROpV={XeOpV|
X: V¥.V#}. Let us show that BCeR(4) and
(AB)C = A(BC).

For all feV# we have

[4(BC)] f=A(BC)f=A(BCf) = (4B)Cf .

The product (4B)C is well defined since C: ¥ *¥ ¥V # and
BeR(A4). Therefore the product A(BC) exists, i.e.,
BCeR(A) and A(BC) = (AB)C.

2. Topologies on the spaces of multipliers

Let mbe a * -invariant subset with unit of Op V. Then m
generates two locally convex topologies on Rm defined by
the following family of seminorms:

t'(m): BeRm—|{(AB)f,)|,
ti(m): BeRm—|((4B)fg)| + [{(4B)*fg)|,
VfgeV# and dem.
Similarly one may define on Lm the following topologies:
t"(m): CeLm—|((CA)fg)|,
ti(m): CeLm—|{(CA)f,g)| + |{(CA)*f.g)|,
VfgeV¥# and dem.

In general we have t'(m) <tl(m) and t"(m) <ti(m);
where < means “weaker than.” If m = {1}, then
F (1) =t (1)=t(1) is the weak topology considered in
Ref. 10 (also called V¥ -weak topology), whereas
tL(1) =¢t5(1)=t. (1) coincides with the quasiweak *-to-
pology introduced in Ref. 11.

These topologies are related in the following way:

t'(m)>t"(1) =t'(1) >t'(m),
A A A A
tim)>ti(D) =tl (1) <tl(m).

Proposition 2.6: Let V be a PIP space. If (V# V) isa
reflexive dual pair, then Op Fis ¢(1)-sequentially complete.

Proof: Let {T, } be a ¢ (1)-Cauchy sequence in Op V,
i.e, for all feV#, {T,f} is a ' (1)-Cauchy sequence in V.
Since (V' #,¥ ) isreflexive, it follows that ¥ # and Vare qua-
sicomplete with respect to the weak topologies a(¥V# ,¥)
and o(V,V# ). Therefore V¥ and ¥ are weakly sequentially
complete, i.e.,

w-lim T, f= TfeV.

n— oo
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This means that T'is amap from V¥ into V. In order to prove
that T is continuous, one uses the dual mapping theory.?

Remark 2.7: Actually the condition of reflexivity of the
dual pair (¥ #,¥) is weak enough to cover most of the spaces
of practical interest, in particular all spaces of distribu-
tions."

Proposition 2.8: Let m be a > -invariant subset with unit
of Op V. If for every rel, (V,,V;) is a reflexive dual pair,
then Rm is ¢ (m)-sequentially complete. Similarly Lm is
" (m)-sequentially complete.

Proof- Let {B,}CRm be a ¢ (m)-Cauchy sequence.
Since the # (1)-topology is weaker than the ¢ (m)-topology
[we write /(1) <t‘(m)], it follows that {B,} is also a
¢ (1)-Cauchy sequence. Moreover, since Op V' is # (1)-se-
quentially complete, there exists a # (1)-limit B of {B,}
such that BeOp V. The sequence {B,} is a ¢ (1)-Cauchy
sequence, which means that for every dem, {4B,} is a
t'(m)-Cauchy sequence and again the fact that
¢ (1) <# (m) implies that {4B,, } is also a # (1)-Cauchy se-
quence, i.e., #(1)-lim,_ AB, = QeOp ¥, which means
that for all f,geV# we have

lim (4B,.fg) =(Qfg) .

The sequence {B,/} is a ' (1)-Cauchy sequence in & (4)
and since for every rel, (¥V,,V,)is a reflexive dual pair, it
follows that & (A4) is ¢ (1)-sequentially complete. There-
fore

t!(1)-lim B,f= Bfe9 (A)

n— oo

and hence

t'(1)-lim AB,f=ABf=0Q/f,

n— oo

which means that Q = AB, i.e., BeERm.

3. Commutants and bicommutanis

(a) Commutants: Let m be a > -invariant subset of Op V.
In Ref. 10 the following commutant was introduced:

m' = {XeOp V|XeLmNRm=M(m),
XA =AX, YAem} .

It was pointed out there that m’ is a vector subspace of

M(m). Moreover, it is * -invariant and contains the identi-

ty. But nothing more is known about this commutant and

our aim in this paper is to perform a systematic analysis of m’

along the lines of the usual theory of von Neumann algebras.
The regular part of m’, i.e.,

m.=m'NL *(V#) ={XeL *(V#)|AX = XA, VAem}
is the strong unbounded commutant studied in Ref. 10. It is
an Op*-algebra on V¥ .

If m is an Op*-algebra on V¥, then the condition
XeM(m) in the definition of m' is automatically satisfied
and in this case m’ coincides with the commutant m/, consid-
ered in Ref. 10.

Furthermore, if m is an Op*-algebra on V' #, then one
may define the following (weak) commutant is Op V:
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m}, = {XeOp V |(Xf,A *g) = (Af.X *g),
VfgeV ¥ and dem}.

We note that m., =m, NC(V ¥,2¢) is the weak unbounded
commutant introduced in Ref. 5 (see also Ref. 8).

From the above discussion, it follows that the different
commutants introduced in this section are related in the fol-
lowing way:

m.Cm,Cm'=my=m; .

Indeed we have the following proposition.

Proposition 2.9: If m is an Op*-algebra on V¥, then
mgy = mj.

Proof: Let Xem;, i.e., for all f,geV# and 4em we have

(XA)f.g) = ((AX)fg) .
Then

((XA)fg) = (Af.X *g) = (fA*X*g) .
={fX*47%g) = (Xf,A*g) .

Thus if Xem;, then (4f,X *g) = (Xf,4 *g), i.e., Xem},.

(ii) Let now Xem. Then for all f,geV and dem we
have  ((XA)fg) = (ALX*f) = (Xf,A*g) = ((4X)fg),
i.e., Xem].

At this stage, the natural question which arises is the
following: When do the five commutants introduced above
coincide. Let m be an Op*-algebra on V¥ . Then m defines
on ¥# alocally convex topology #,, (called the m topology)
by the family of seminorms f— ||4f||; f6¥ # , Aem. This to-
pology is the coarsest locally convex topology on ¥# such
that every dem is continuous from V¥ [¢,, ] into & en-
dowed with the usual Hilbert space norm topology.

Definition 2. 10: The Op*-algebra m is said to be closed if
V*# [t, ] is complete.

A comparison of the commutants m_, m,, and m;, was
done in Ref. 10 for closed Op*-algebra on ¥ # satisfying the
condition I, (Ref. 4) (i.e., m contains a generating mono-
tone increasing sequence 4, >1such that 4, V# = V#). In
this case we obtain the equality m. = m, = m’ = my = m/,.

If m is a ™ -invariant subset of Op ¥, then one may also
define the following commutant:

m; = {XeL * (V*)|(Xf.A *g) = (Af.X *g);
V fgeV' ¥ and Aem}.

Following Proposition 2.9, one can easily prove that

m.=m.Cm'.

As pointed out in Ref. 10, in general, m’' is not a
*.subalgebra of Op V.

Proposition 2.11: Let m be an Op*-algebraon V¥ . Then
m'’ is a *-subalgebra of Op V.

Proof: Let X,Yem’ and assume the product XY is de-
fined.

We want to show that XYem', i.e., for all f,ge¥V ¥ and
Aem, the following relation holds:

(Af,(XY)*g) = ((XY)f,4 *g) .
We have
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(4f,(XY)*g) = (A, Y*X *g) = (YAf,X *g) = (AYf.X *g)
= (Y[, A*X *g) = (Y£,X*4 *g)
= {((XY)f A *g), ie, XYem'.

(b) Bicommutants: In this paper we will be concerned
with the following bicommutant.
Let m be a * -invariant subset of Op V. Then we define

m" ={YeOp V|YeM(m'), YX=XY, VXem'}.

This bicommutant is related to m%={YeOp V|YX
= XY, VXem.} (cf. Ref. 10) in the following way:

m"Cmyy=(m.)'COp V.

il. TOPOLOGICAL PROPERTIES OF THE COMMUTANT
AND BICOMMUTANT

Since m’' C LmM Rm, it follows that one can consider on
m’ either of the four topologies defined on the spaces of mul-
tipliers of m. Clearly, since the elements of m and m’ com-
mute, the four topologies coincide on m’ and we will write
simply #(m).

On m” we will consider the topology #(m’) given by the
seminorms,

t(m'): Bem"—|((4B)f,g)| = |((BA)f8)|,
VfgeV# and dem’,

and on mCm”, the t(m’)-topology inherited from m”.

It is well known that for the algebra B(5°) of bounded
operators, the usual commutant and bicommutant are
closed in the weak ( and a fortiori the strong) topology.**

Let m be a > -invariant subset of Op V. In this section,
replacing the weak topology, respectively, by #(m) and
t(m'), we extend the above property of bounded commutant
and bicommutant to m’ and m”, respectively. Furthermore,
we describe the relation between the commutant of m and
that of its #(/n") closure and we show, under the assumption
of reflexivity of the dual pair (¥ #,V'), that m’ is t(m)-se-
quentially complete.

Proposition 3.1: If m is a > -invariant subset with unit of
Op ¥, then m' is closed in M(m) with respect to the ¢(m)-
topology.

Proof: Let AOp ¥V be the limit of a t(m) converging net
{4,}Cm', i.e, for all f,geV# and Bem we have

lim(BA_f,g) = lim(4,Bf.g) = (4Bf,g),

which implies that
(ABf,g) = lim(4,Bf,g) = lim(BA, f.g)

= (BAfg),

Corollary 3.2: If m is a * -invariant subset of Op ¥, then
m” is closed in M(m')=Lm'NRm’ with respect to the
t(m')-topology.

Proposition 3.3: If m is a * -invariant subset of Op ¥,
then the commutant of m is equal to the commutant of its
t(m') closure, i.e.,

m' = ()"

ie., dem’ .
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Proof: The inequality (7' ™)’ Cm' follows from the
fact that m C m*“™. Let us now prove the opposite inclusion

Let Bem'"™, i.e., there exists a net {B, } Cm such that
t(m')-lim, B, = B. Let Xem', i.e., XB, = B, X. Then, for
all /,ge¥V# , we have

(XBfg) = liin (XB, f.8) = ligl(BaXf,g) = (BXfg),
i.e., Xe(m"™)’,

Corollary 3.4: Let m, and m, be two > -invariant subsets
of Op ¥, such that m,Cm, and m, is t(m;) dense in m,.
Then m; =mj.

Proof: The inclusion m; C m; follows from the fact that
m,Cm, Now since m, is t(m;]) dense in m,, ie,

—t(m])

mZCrTf,("") we get (7, ") Cm;. From the proposition
3.3, we know that (™)’ = m{, which implies that
mi Cm;, and hence the equality m; = m; .

Proposition 3.5: Let m be 2 * -invariant subset with unit
of Op V. If (V' #,V )is a reflexive dual pair, then the commu-
tant m' is t(m)-sequentially complete.

Proof: Let {X, }Cm’ be a t(m)-Cauchy sequence and
consequently a #(1)-Cauchy sequence. Since Op Vis #(1)-
sequentially complete, for every Aem, the following #(1)-
limits exist in Op V-

X,-X,
AX, - Ax,
X, A-XA,

which implies that #(m)-lim,_
AX = XA, which means that Xem'.

X, =2X. Moreover

IV. BICOMMUTANT AND THE #m’) CLOSURE OF m

Since m” is closed with respect to the ¢(m')-topology,
the natural question to ask is whether it coincides with the
t(m') closure of m. In this section we give a sufficient condi-
tion which guarantees this result.

Following Ref. 25, we will say that a subspace W of a
PIP space V'is orthocomplemented in ¥, if W is the range of
an orthogonal projection P, i.e., W= PV.

Proposition 4.1: Let m be an Op*-algebra on ¥ # . If for
all feV# and Cem’, the o(V,V¥) closure W= mCf°

= Cmf° of mCf is orthocomplemented in ¥V then
m" =m'""™,

Proof: The inclusion 7" Cm” follows from the fact
that m” is closed with respect to the #(m') topology.

Let us now prove the opposite inclusion.

(a) Let feV#, Cem’, and P,, be the orthogonal projec-
tion on W= mCf°. Since m is an Op*-algebra it is
o(V,V#) continuous and therefore it leaves W invariant,
ie., P,em’.

Now take Yem” and any geV'# . Then

(f,C*Y*(1 —P,)g) = (Cf,Y*(1 —P,)g)
=(Cf,(1—P,)Y*g)
=((1-P,)CfY*g) =0,

ie., YCf= P, YCf.
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We then conclude that given Yem”, for every €>0,
feV# there exists Mem such that
(Y —M)Cfh)<e heV*.

Let us show that m” Cm*‘™” . We recall that zero neigh-
borhoods in the #(m’)-topology are of the form

yf,,...f,,;h,,...,h,,;C,....,C,,;e(0)

= {deM(m")||[{AC, fi,h}| <€,....|{AC,f,.h,)| <€},
for any finite sequences f,,h,€V ¥, Cem’;i=1,..,n.

It is sufficient to prove that if Yem”, f;,h,eV ¥, C.em’,
i=12, and €>0 then there exists Mem such that
(Y — M)EV o icicue (0D

For this consider the PIP space V& V with central Hil-
bert space # @5, and the subalgebra mem of
L (V¥ o V#). Every Mem gives rise to a regular operator

- (M 0
Mz(o M)'

We denote by 7 the set of such operators, i.e.,

e = ]

We can compute explicitly the unbounded commutant and
bicommutant of 7 and we get, respectively,

(X X
= {X: 1 X‘z)iXijem'; ij= 1,2} s
2t A2

~un — Y o ” __r\'l'r
7] —-[Y—(O Y)|Yem }—m .

Now, applying the results of part (a) of this proof to /1" we
get that VYem”, ViV * @ ¥V # and €> 0 there exists Mem
such that 3

[(Y—-MCLfh) <e€.
Thusis f= () and = (%) it follows that

[{(Y — M)Cf,,h,)| <€/2
and

(Y —M)Cfh) | <€/2.

(c) In part (b) we have used the fact that the subspace

m(&; )7 is left invariant by /2. Now, since C;, C,em’ implies

(§ %)em and Mm(S% )7 is also invariant under 7, it fol-
lows that ¥ Yem” and Ve> 0, there exists Mem such that

(Y = MYC, fih))| <72
and

[{(Y—=M)C, fo,h,)| <€/2.

Thus (Y — M)e? " ;, ».c.c.e (0).Since that is true for any
neighborhood, we have that Yem''™” .

V.CLOSED Op*-ALGEBRAS AND THE ARAKI-JURZAK
BICOMMUTANT

In Ref. 10 it was shown that if m is a closed Op*-algebra
satisfying the condition I, then m/; = m’. Actually, in this
case all the commutants considered in this paper coincide,
i.e.,

my=m.=m, =mf=m,=m'CL*(V).

In this section, following the strategy of Ref. 10, we study the
relationship between the bicommutants m’ and m”.
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] V#[t

Let m be a closed Op*-algebra on V¥ and denote by
B(V*[t,1,V*#][t,]) the set of all sesquilinear forms
which are jointly continuous in the m-topology, i.e., for all
BeB(V*#[t, ],V #[t,]) there exists an Aem such that for
some constant M and all f,ge¥V#, we have

B ) <M ||l Af| |48l -
One may define the following commutant and bicommu-
tant*:
m}y ={BeB(V*[1,, 1,V *[1,,])|B(4f8)
VfgeV#* and Adem},
mia ={yeB(V#[1,, 1.V *# [, D I7(Che) = v(£,C*8);
Vf.geV# and Cem’}.

Proposition 5.1 (Ref. 4): If m is a closed Op*-algebra on
V# satisfying the condition I, then

(i) m/, is an Op*-algebraon V# satisfying I, but m/, is
not closed (which implies that in general m/, is not an Op*-
algebra).

(i) The m topology is metrizable; it is given by the se-
minorms,

f=4, fl; neN, feV¥*.

Let m be a closed Op*-algebraon V' # satxsfymg I,,. First
of all we know that m’,, is contained in B(V # [tm; ]
] ), whereas m” belongs to Op ¥V which is isomor-
phic to the space B(V #[ 7],V #[])of all Mackey separate-
ly continuous sesquilinear forms on ¥ # X ¥ #.!3 Therefore,
m’; . will coincide with m” if, in particular

BVH[1,, 1.V [t ] =B *I1LV*[7])

=B(f4*g);

Since the PIP space ¥ posesses a central Hilbert space 77,
the topologies ¢, and 7( V #,¥) are comparable.

In general, the Mackey topology is strictly finer than the
m/,-topology and we have the following situation (where
V., —thedualof y# [t ] and ¥, —thedualof ¥ # [ 7] are
equipped with their Mackey topologies and each arrow de-
notes a continuous embedding with dense range):

V#[rloV?# [tm; ] >H > V> Ve
According to Proposition 5.1, the m/, -topology is metrizable
and this implies that (Ref. 26, Proposition 36.3) on the in-
complete space V¥ the . -topology coincides with the
Mackey topology 7(V#,1).

However, an element of B(V #[ ],V #[7]) need not be
jointly continuous. Therefore we only have the function

By # # #* #

BV*IrL,V* It CB(V*[ ¢, 1.V * [t ])

which implies that m” Cm/;,. We summarize this analysis in
the following proposition.

Proposition 3.2: If m is a closed Op*-algebra satisfying
the condition I, then m”" Cm},.
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Semilinear operators on a complex Hilbert space are studied in a part of a program that aims to
develop the theories of additive operators on complex and quaternionic Hilbert spaces for
application to problems in mathematical physics. The more notable among the new results
proved on the eigenvalue problem for semilinear operators are the following: (i) if @ is an
eigenvalue of a semilinear operator then so also is any complex number which has the same
modulus as ; (ii) if a normal semilinear operator has two eigenvectors belonging to different
eigenvalues, then either the two eigenvectors are orthogonal or two eigenvalues have the same
moduli; and (iii) a normal semilinear operator has a complete set of eigenvectors if and only if
it is self-adjoint. Further, it is shown that there exists a norm-preserving semilinear
isomorphism between the spaces of bounded linear and semilinear operators on a complex
Hilbert space. Finally it is demonstrated how the theory of semilinear operators can be
exploited to solve the problems of finding three involutive mutually anticommuting self-adjoint
two-by-two matrices and four four-by-four matrices with the same properties: the unusual and
remarkably easy solution of this old familiar exercise establishes the relevance of the theory

being developed here to physics.

1. INTRODUCTION

A semilinear transformation was first defined by Segré’
about 100 years ago. According to Segré’s definition, a semi-
linear transformation is a pair o = (¢’,0") of mappings
between linear spaces 7~ and #” over the fields F and G,
respectively, where ¢’ is an isomorphism between the addi-
tive group 7~ and the additive group #7, and ¢” is an iso-
morphism between fields F and G subject to the condition

ag(au) =o"(a)o’(u), VaecF and Yue? . (1.1)

The concept was used to obtain a number of useful results in
projective geometry culminating in the first fundamental
theorem of projective geometry.”

Jacobson® modified the definition so that o’ was merely
a homomorphism between the additive groups in the two
linear spaces and used the concept to obtain a penetrating
result relating isomorphisms of rings of linear transforma-
tions on vector spaces to isomorphisms of the vector
spaces—a result that is of fundamental importance in the
representation theory of a simple ring. According to Jacob-
son’s definition both linear and antilinear maps between
complex vector spaces are semilinear.

For maps between complex vector spaces, many later
authors (see, for example, Lang*) used the term semilinear
to mean the same thing as what physicists call antilinear or
conjugate linear. In this work, as in our earlier works,>'* we
use the term in the sense described in the preceding sentence,
that is, in a sense synonymous with antilinear and conjugate
linear. It should be noted that maps semilinear according to
our definition are also semilinear according to Jacobson’s
definition, but maps semilinear according to Jacobson’s de-
finition® need not be semilinear according to our definition.

Our original interest in semilinearity arose when we ob-
served that though practically every branch of modern
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mathematics was used in quantum theory, the functional
calculus used in quantum theory was somewhat primitive
and messy. We identified that at the root of this malady lies
the fact that while modern calculus on Banach space is lop-
sided in the sense that it relies too much on linearity, all the
most important functionals in quantum theory have both
linearity and semilinearity in equal amounts, which in turn is
a consequence of the fact that all observed values must be
real. With an aim to rectify this situation, in Ref. 6 we devel-
oped a new calculus on Banach space in which the novelty
was that we abandoned the requirement that the derivative
must be a linear map in favor of the requirement that it must
be a direct sum of a linear and a semilinear map. When the
derivative is bounded this is equivalent to abandoning linear-
ity in favor of additivity.® A group of Italian physicists have
developed our calculus further and published five more pa-
pers'*'8 on it. Even though over a dozen papers now exist on
this calculus, it is still in its infancy and only the simplest
problems in the calculus of variations on a complex Hilbert
space have been solved by this calculus. Both the Italian
group and ourselves are engaged in further work on the sub-
ject which will be reported in due course.

Semilinearity in quantum theory makes its first appear-
ance in the Riesz representation theorem: the isomorphism
between a complex Hilbert space and its dual is semilinear.
As is well-known, Riesz representation theorem lies at the
heart of the spectacularly successful Dirac formalism.
Though the overwhelming majority of operators appearing
in quantum theory are linear, at least two, namely the time
reversal operator and the charge conjugation operator, both
of which are of the greatest fundamental importance, are
semilinear. The time reversal operator was introduced into
quantum theory by Wigner.'®?° He also proved'® that a Hil-
bert space operator which preserves the modulus of the inner
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product must be either unitary or semiunitary (antiuni-
tary). A related result, which asserts that a transformation
that preserves convex combinations of quantum mechanical
states (in this context a state is a non-negative self-adjoint
operator of unit trace and a convex combination is a linear
combination with positive coefficients) is either unitary or
semiunitary, was proved by Kadison.?' Yet the literature on
semilinear operators is sketchy and unsatisfactory: the most
comprehensive account, to the best of our knowledge, is to be
found in the admirable book by Messiah.”> More recently
several attempts have been made to develop the theory of an
operator algebra on a quaternionic Hilbert space with the
aim of finding a more satisfactory description of quantum
theory: the two more notable studies are by Horwitz and
Biedenharn® and Adler.?* In trying to unravel some of the
complexities (or maybe hypercomplexities) of operators on
a quaternionic Hilbert space, we observed'>'? that semilin-
earity plays a fundamental role in the study of such opera-
tors. We then used the ideas developed in Refs. 12 and 13 to
prove?® an important theorem on the algebra of additive op-
erators on a complex Hilbert space.

The term algebra is used by algebraists to describe aring
that is also a vector space. If used in this sense, the term
algebra cannot be used to describe the collection of bounded
linear operators on a quaternionic Hilbert space or the col-
lection of bounded semilinear operators on a complex Hil-
bert space. We observed'>'*? that the smallest algebras
containing these collections are the algebras of additive oper-
ators on a quaternionic and a complex Hilbert space, respec-
tively. Our current interest in semilinear operators owes its
origin to our desire to develop a rigorous mathematical theo-
ry of the algebras of bounded additive operators on complex
and quaternionic Hilbert spaces. In this paper we consider
only semilinear operators on a complex Hilbert space and in
our next paper”® we consider additive functionals and opera-
tors on a quaternionic Hilbert space using similar methods.

In Sec. II we develop the definitions and the notations
that we use in this work, in Sec. III we collect all the results
proved in earlier works that are relevant to our present
study, in Sec. IV we present all the new results of the present
work, in Sec. V we demonstrate the relevance of our study to
the theory of spinors, and in Sec. VI we conclude with a few
closing remarks.

H. FORMALITIES

We denote the field of real and complex numbers by R
and C, respectively, and the skew field of quaternionic
numbers by H.

Let 57 be a vector space over F where F =R, C, or H.
We define a positive definite Hermitian form on 77 by

(,): H'XF -F,

{au,pv) = aluw)p*, 2.1
(u +vw) = (u,w) + (v,w), 2.2)
(u,v)* = (v,u), (2.3)
(u,uy) =0, onlyifu=0, (2.4)

where a* = aif F is real, a* = complex conjugate of a if F is
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complex, and a* = quaternionic conjugate of « if F is qua-
ternionic.

Let 57, and 77, be Hilbert spaces over F. We say thata
map L: #°, - 77, is additive if and only if for all u,ve#,,

L(u+v) =L(u) + L(v). (2.5)

Thus an additive map is a homomorphism of the additive
group in a vector space. If, in addition, the additive map L
satisfies.

L(au) = aL(u), (2.6)

for all aeF and all ue,, then it is called linear. If, on the
other hand, the additive map L satisfies

L(au) = a*L(u), (2.7)

for all o€l and all ue7 |, then it is called semilinear or anti-
linear. It was actually shown in Ref. 13 that for a quater-
nionic Hilbert space a semilinear map defined in this way
leads to a contradiction and, therefore, does not exist. There,
given any particular choice of /, j, and £, it is necessary to
define three different kinds of semilinearities called i, j, and k
semilinearity (see Ref. 13). In this work we do not propose
to deal with the quaternionic case and so we do not define
these semilinearities. For our present purposes we concen-
trate our attention to the complex case. From now on, unless
otherwise stated, /%%, 57, #°, denote Hilbert spaces over C.

An additive map L: 57, —» 7, is said to be prelinear if
and only if

[[L(aw)|| = |e] ||Lu| (2.8)

for all aeF and all u57°,. Note that both linear and semilin-
ear maps are prelinear.

The collection of all bounded linear maps from #° to C
is a complex vector space that is called the dual of #” and is
denoted by #°.

The collection of all bounded semilinear maps from 57
to C is a complex vector space that is called the semidual of
2 and is denoted by 7,.

The collection of all bounded additive maps from 57 to
C is a complex vector space that is called the additive dual or
addual (for short) of 5 and is denoted by 7, .

The collection of all bounded linear maps from 5, to
#°, is a complex vector space that is denoted by
L(F\,7,). Note that
L(HC) = (2.9)

The collection of all bounded semilinear maps from 77,
to #°, is a complex vector space that is denoted by
KL (5 ,,5,). Note that

LLHC) =T, (2.10)

The collection of all bounded additive maps from 7%, to
#°, is a complex vector space that is denoted by
o (H°,,7,). Note that

A(HC)=F,. (2.11)

The reader will have noticed that our convention is that
vector spaces are denoted by letters in capital script, maps by
capital italics, vectors by lowercase italic letters, and scalars
by lowercase Greek letters. With these conventions writing
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Lu for L(u) will not give rise to ambiguity and in the future
we shall do so.

Let A be either a linear or a semilinear map from 77, to
#,. Anorm of A denoted by ||4 || is defined by the formula

14 = “sﬁlf,”Ax”' (2.12)

This definition turns . (#°,,%°,) and . L (77 ,,7¢,) into
normed spaces.

Let 4", @4, be the direct sum of two normed spaces
A", and A",. An element of 47, @ .4, is a pair (x,,x,) with
x4 and x,€4",. A norm of (x,,x,) denoted by || (x,,x,)]|
is defined by the formula

lGeux) | =[xl + [1%2]-

We shall now define adjoints. These will be defined for
two kinds of maps: (i) maps between different spaces and
(ii) maps from a space to itself—such maps will be described
as operators. Case (ii) is a special case of (i), but the defini-
tions of adjoints look rather different, at least superficially.
In what follows when a map is regarded as belonging to case
(i) it will carry a hat and operators will be hatless.

. Let 4: 5 ~7, be a linear map. The adjoint
A* %, ,is alinear map defined by the property

f(ﬁu) = *N(u), (2.14)

for all ue¥", and all fe7,.
. Let 4: #,—~77, be an additive map. The adjoint
A% 5, -, is a linear map defined by the property
flAu) = A w), (2.15)
for all ue#, and all f£7,, .
Let A: 77 -7 be a bounded linear operator. The ad-

joint 4 *: ¥ - 57 is abounded linear operator with the prop-
erty that

(Au,v) = (U,A *U>,

for all u,ve#.

Let A: 77— 2 be a bounded semilinear operator. The
adjoint 4 *: 5¥° - 57 is a bounded semilinear operator with
the property that

(Au,v) = (4 *v,u),

for all u,ve#¥”.

Since an operator A can be regarded as a special case of a
map between two spaces, we have here two kinds of adjoints
for A: A *, which is an operator on the same space, and 4 *,
which is an operator on the dual of the space on which A4 acts.
Note that there is no definition of an adjoint of a semilinear
map corresponding to the definition (2.14) for linear maps.
An easy computation shows that an attempt to define the
adjoint of a semilinear map as a semilinear map with a prop-
erty analogous to (2.14) leads to disaster. However, a semi-
linear map is also additive and definition (2.15) is a general-
ization of (2.14) and works equally well for linear, semilin-
ear, and additive maps, but the adjoints thus defined are all
linear. The linear adjoint defined in this way for a semilinear
operator was reconciled with the semilinear adjoint defined
through (2.17) in Ref. 13.

We now have a further collection of useful definitions,
where we use the not uncommon convention that unless oth-

(2.16)

(2.17)
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(2.13)

erwise stated the domain of an operator is the whole of 7#°
and indeed in this work we do not use a single operator
whose domain is not the whole space.

Let A be a linear or a semilinear operator on J7°. A sub-
space .# of 7 is said to be invariant under A if A(H ) C M,
or in other words if e # implies Aue.#.

Let A be a linear or a semilinear operator on /¥ and let
# be a subspace of # with the property that both .4 and
M* are invariant under A4, then .# is said to reduce A.

Spaces of bounded linear, semilinear, and additive oper-
ators on Z# will be denoted by ¥ (5#), ¥.L (), and
o (), respectively.

A bounded linear or semilinear operator 4 on #° is
called normal if and only if

AA* =A*A. (2.18)

A bounded linear or semilinear operator 4 on 7 is
called self-adjoint if and only if

A=A4* (2.19)
A bounded normal operator U on % satisfying
Uu*=1, (2.20)

where Iis the identity map on 5% and is called (i) unitaryifit
is linear or (ii) semiunitary if it is semilinear.

Note that it follows from their definitions that self-ad-
joint (whether linear or semilinear), unitary, and semiuni-
tary operators are all normal.

Let 7 be a vector space on a field F. Let a product be
defined on 7" in such a way that it turns 7 into a ring, then
7~ with this additional operation is called an algebra. If such
an algebra in addition satisfies the property that

(au) (Bv) = af(uv), (2.21)

then it is called a K algebra. It turns out that . (#°) with
the product defined by composition of maps is a X algebra,
& (7°) with the product defined in the same way is an alge-
bra but not a K algebra, and .*.% (5°) with the product
defined by composition of maps does not satisfy the require-
ments of being an algebra.

Let 4 be an operator or a matrix. Then 4 is said to be
involutive®” if and only if

A’=1L (2.22)
Let o be an algebra. An involution + on </ is an involu-
tive operator on .« that takes 4 to A * and satisfies the fol-

lowing properties: (i) * is a homomorphism of the additive
group in the algebra, that is,

(A+B)*=A*+B*, (2.23)
for all 4,Be.o/; (ii) # is product reversing, that is,
(AB)* =B*A4*, (2.24)

and being involutive, of course, means that it satisfies

A** =A, (2.25)
for all Ae.«. This definition is a generalization of the one
given by Rudin.?® Here, unlike Rudin, we do not require * to
be semilinear but we require it to be additive.

Let A be an operator on a complex Hilbert space #°.
Then a nonzero vector v satisfying
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(2.26)

for some complex number q, is called an eigenvector of 4.
Eigenvectors of A belonging to the eigenvalue + 1 are called
Jixed points of A.

Av=av,

Ill. SOME KNOWN RESULTS

In this section we state without proof results that are
known and are relevant to the further development of our
theory. We, however, give references to the works where the
proofs can be found except in cases where the proof is imme-
diately obvious.

Proposition 3.1: The product (by composition) of two
linear operators or two semilinear operators is linear and the
product of a linear operator and a semilinear operator is
semilinear.

Proof: Obvious.

Proposition 3.2: Let A be a semilinear operator on a com-
plex Hilbert space 7. Then the following statements about
A are equivalent: (a) 4 is continuous at a point x,&57”; (b) 4
is bounded; (c) 4 is continuous at every point xe77”.

Proof: See Ref. 6 after noting that both semilinear and
linear operators are prelinear and that 7% is a normed space.

Remark: In making use of Ref. 6 note that Proposition
[P2] there is false in that the space of prelinear operators is
not a vector space because the sum of a linear operator that
takes the vector au to av and the semilinear operator that
takes the same vector to a*v is clearly not prelinear. How-
ever, for each of the spaces . (77°,,5%,), S L (1,5 >),
and &7 (#°,,5%,) Proposition [P2] in Ref. 6 appropriately
modified is valid with the proof given there being correct.

Proposition 3.3: The space of bounded additive opera-
tors on a complex Hilbert space 77 is the direct sum of
spaces of bounded linear and semilinear operators on #°.

Proof: See Ref. 9.

Proposition 3.4: Let y be any element of a complex Hil-
bert space 7. Let @, be the semilinear functional on #
defined by

@, (x) = (y,x). (3.1)
The correspondence y —®, is a norm-preserving linear iso-
morphism from 7 to 77°,.

Proof: See Ref. 13.

Proposition 3.5: If the semidual is identified with the
original space by the isomorphism of Proposition 3.4 and the
dual is identified with the original space by a similar but
semilinear isomorphism, then the adjoint of a semilinear
map defined by (2.15) becomes identical with that defined
by (2.17).

Proof: See Ref. 13,

Proposition 3.6: The algebra of bounded additive opera-
tors on a complex Hilbert space 57 is the smallest aigebra,
that is, a vector space in which a ring structure is defined on
the set of vectors, containing both linear and semilinear
bounded operators on S¥°. Furthermore, the algebra is
normed and the correspondence between an operator and its
adjoint is a norm-preserving involution on this algebra.

Proof: See Ref. 25.
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IV. SOME NEW RESULTS

The end of a proof is marked by a [J.

Proposition 4. 1: Let A be a semilinear operator on a com-
plex Hilbert space 5#°. Let u be an eigenvector of 4 belonging
to the eigenvalue acC. Then every complex number ¥ satis-
fying

l7] = || (4.1)

is also an eigenvalue of 4 and every vector v in the one-
dimensional subspace spanned by u is also an eigenvector
belonging to some eigenvalue satisfying (4.1).

Proof: Every y satisfying (4.1) can be written as

Y= |ale’, (4.2)
with 6e[0,27[, and in particular « itself can be written as

a = |ale*, (4.3)
for some ¢e[0,27[.

Now

Au = au = |ale?y, 4.3)

hence
Ae—0—®72,
— ei(0— ¢)/2Au — ei(9— ¢)/2|a|ei¢u — Ialeiee— i(6— ¢)/2u.
(4.4)
Thus ¥ = |a|e? is an eigenvalue.
If v belongs to the one-dimensional subspace spanned by
u, then

v=Eu=|£|eu, (4.5)
for some p[0,27[. Then
Av=[Ele~*Au=£| ale= "7~ ¥y
= [ale ="~ #¢ |obu
= |aje "~ ¥y, (4.6)

which shows that v is an eigenvector of 4 belonging to the
eigenvalue |a|e ~ “®?~ ¥ which, of course, satisfies (4.1). O

Remark: An eigenvector as in the linear case spans an
eigenspace & , but for semilinear operators & does not corre-
spond to a fixed eigenvalue, rather it is characterized by an
eigencircle in the complex plane. Each vector in & is an
eigenvector belonging to an eigenvalue somewhere on the
circle and each point on the eigencircle has infinitely many
eigenvectors in & (we find one such eigenvector v by Propo-
sition 4.1 and then note that v with £ real belongs to the
same eigenvalue). Here we have a forerunner of what hap-
pens in the quaternionic case'*?° and here, too, we can define
an equivalence class of eigenvalues and call it an eigenclass.
However, as was shown in Ref. 12, defining such an equiv-
alence class does not seem to serve any very useful purpose.

Proposition 4.2: Let A be a semilinear operator on a com-
plex Hilbert space 7#°. Let .# be a subspace of 7 invariant
under 4. Then .#" is invariant under 4 *.

Proof* Let uc.# and let ve.#*. Then invariance of .4
under A4 implies that Aue.# . Thus

(Au,v) =0 = (4 *vu), 4.7)

for every uc.#, which shows that 4 *ve.«#". a
Corollary 4.2.1: Let A be a semilinear operator on a com-
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plex Hilbert space #°. Let .4 be a subspace of # invariant
under both 4 and 4 *. Then .# reduces 4.

Proof: 1t is given that .# is invariant under both 4 and
A * and invariance of # under 4 * implies by the main Prop-
osition that .#* is invariant under 4. 0

Proposition 4.3: Let A be a normal semilinear operator
on a complex Hilbert space 5. Let .# be a subspace of #°
spanned by the eigenvectors of 4. Then .# reduces 4 and the
restriction of 4 to .# is self-adjoint.

Proof: We shall first show that if  is an eigenvector of 4
belonging to the eigenvalue a, then u is also an eigenvector of
A * belonging to the same eigenvalue. This is done by com-
puting || (4 * — a)ul|? as follows:

((4* —a)u,(4* — a)u)

= (4 *uAd*u) — a(u,4d*u)
— a*{A4 *uu) + aa*{uu)

= {44 *u,u) — alu,Au) — a*{Auu) + aa*{u,u)
= (4 *4uu) — a{u,Au)y — a*{Auu) + aa*{u,u)
= (Au,Au) — al{u,du) — a*{Au,u) + aa*{u,u)
= {{4 — a)u,(4 — a)u) =0.

Hence
A4*—a)u=90 4.9)

and u is an eigenvector of 4 * belonging to the same eigenval-
uea. Thusin.#, A and A * have the same action on members
of a basis and therefore on the whole subspace and thus the
restriction to .# of both 4 and 4 * are identical. Finally it is
evident that .# is invariant under both 4 and A * and there-
fore by Corollary 1 .« reduces 4 (and also 4 *). O

Corollary 4.3.1: Let A be a normal semilinear operator
on a complex Hilbert space #°. If there exists a basis in 5%
each of whose members is an eigenvector of 4, then A4 is self-
adjoint.

Proof: The proof follows from Proposition 4.3 by noting
that the span of the eigenvectors is the whole space %°. O

Remark: In a one-dimensional space every semilinear
operator is a scalar multiple of complex conjugation and
therefore has an eigenvector. Since the span of its eigenvec-
tors reduces A in an n-dimensional space if it has (n — 1)
linearly independent eigenvectors, then it must also have n
linearly independent eigenvectors. These facts can be sum-
marized in the following corollary.

Corollary 4.3.2: Let A be a normal semilinear operator
on an n-dimensional complex Hilbert space 7. Then 4 is
either self-adjoint or the number of linearly independent ei-
genvectors of A does not exceed (n — 2).

Remark: Proposition 4.3 shows that every normal semi-
linear operator A on # has a decomposition 4 = B + Cin
which B and C have invariant essential supports (the essen-
tial support of an operator is the orthogonal complement of
its kernel) in orthogonal subspaces and B is self-adjoint. This
may suggest that C is anti-self-adjoint, that is, C= — C*,
but the example constructed in Proposition 4.6 shows that
this is not necessarily true.

Proposition 4.4: Let A be a semilinear self-adjoint opera-
tor on a finite dimensional Hilbert space 5. Then there ex-
ists at least one eigenvector of 4 in 77,

(4.8)

2415 J. Math. Phys., Vol. 29, No. 11, November 1988

Proof: Here A is semilinear and self-adjoint implies that
A ? is linear and self-adjoint. Hence by the spectral theorem
for linear self-adjoint operators 4 * has a complete set of ei-
genvectors and in particular it has an eigenvector u belong-
ing to a real eigenvalue y. We consider the following possi-
bilities.

(i) ¥ = 0. Then it is easy to see that « is an eigenvector of
A belonging to the eigenvalue 0.

(ii) 0. Then an easy calculation shows that either iu
or y yu + Au is an eigenvector of 4 belonging to the eigen-
value 7. a

Proposition 4.5: Let A be a semilinear self-adjoint opera-
tor on a finite dimensional complex Hilbert space 57°. Then
A has a complete set of eigenvectors.

Proof: Let dim 5 = n. By Proposition 4.4 we find one
eigenvector u of 4 and let .4 be the one-dimensional sub-
space of 7 spanned by u. Then by Proposition 4.3 .# re-
duces 4 which means that the restriction of 4 to.#* is a self-
adjoint semilinear operator on an (n — 1)-dimensional
Hilbert space. By repeated application of Propositions 4.4
and 4.3 we get n mutually perpendicular eigenvectors of 4
[actually if we use Corollary 4.3.2 it is sufficient to have
obtained (n — 1) such eigenvectors] and since dim #° = n,
these eigenvectors must span 7. a

Remark: The Dirac formalism suggests that it could be
possible to generalize Proposition 4.5 to the infinite dimen-
sional case. A rigorous generalization in terms of spectral
measures rather than eigenvectors is under construction and
will be presented in a forthcoming paper. We have now seen
that normal semilinear operators that have a complete set of
eigenvectors are self-adjoint and we have also seen that self-
adjoint semilinear operators have a complete set of eigenvec-
tors. The question that arises next is the following: is there a
normal semilinear operator that is not self-adjoint or, in oth-
er words, which does not have a complete set of eigenvec-
tors? We present the answer in the following proposition.

Proposition 4.6: On every complex Hilbert space of di-
mension greater than one there exists a normal semilinear
operator which is neither self-adjoint nor anti-self-adjoint.

Proof: Let dim 57° = 2. Let 4, and u, be an orthonormal
basis in #°. Define 4 by semilinearity and

Auy = (1/2) (u, + iny), (4.10)
and
Auy = — (1/42) (iu; + u,). (4.11)
Then from (2.17) it follows that
A*uy = (1/2) (u, — iuy) (4.12)
and
A*uy = (1/42) (iu, — uy). (4.13)
Now
A4 *u, = (1/\2) (Au, + idu,)
= (U + u, + iUy — iny) = u, (4.14)
and
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A*Au, = (1/2) (4 *u, — id *u,)

=Mu, +uy — iu, + iuy) = u,. (4.15)
A similar calculation shows that
AA*uy = u, = A *Au,. (4.16)
Thus 4 is normal and
AA* =1, (4.17)

where Iis the identity operator on 7°. Here, 4 thus defined is
normal but neither self-adjoint nor anti-self-adjoint. Thus
there exists a normal semilinear operator with the required
properties on a two-dimensional Hilbert space. We can con-
struct a semilinear operator on any Hilbert space of dimen-
sion greater than 2 with the required properties by taking the
direct sum of the operator constructed above on a two-di-
mensional subspace with a self-adjoint semilinear operator
on the orthogonal complement of the subspace. a

Remark: Since in Proposition 4.6 with A defined on a
two-dimensional space, 4 # A *, A cannot have any eigenvec-
tors because if it had an eigenvector u, then span {u} will
reduce A and then since (span{u})' is a one-dimensional, A
will have an eigenvector there also and 4 will have a com-
plete set of eigenvectors which would imply 4 = 4 *, a con-
tradiction. Since every Hilbert space of dimension greater
than 1 contains a two-dimensional subspace, this construc-
tion shows that in general normal semilinear operators need
not have a complete set of eigenvectors.

Proposition 4.7: Let A be a normal semilinear operator
on a complex Hilbert space /7. Let 1 and v be eigenvectors of
A belonging to eigenvalues a and B, respectively. Then either

la| =8| (4.18)
or

{(u,v) =0: (4.19)

Proof: We have

Au=au (4.20)
and

Av = Pv. (4.21)
Equation (4.21) implies by Proposition 4.3 that

A*v =P (4.22)
Hence

alup) = (Au,v) = (A *v,u) = B {v,u) (4.23)
or

{u)|(la| — 1B]) =0, (4.24)

which implies that either (4.18) or (4.19) is true. O

Remark: Let a normal operator A have two linearly in-
dependent eigenvectors ¥ and v belonging to the same eigen-
value. Then their linear combinations, if 4 is semilinear, will
not in general be eigenvectors of 4, though linear combina-
tions involving only real coefficients will be eigenvectors of
A. Insuch assituation things can always be so arranged that 4
has two mutually perpendicular eigenvectors belonging to
the same eigenvalue. This is proved in the proposition that
follows.

Proposition 4.8: Let u and v be two linearly independent
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eigenvectors of a normal semilinear operator 4 on a complex
Hilbert space 7 belonging to the same eigenvalue @. Then
there exist two mutually perpendicular eigenvectors of 4 be-
longing to the eigenvalue a.

Proof: We have

Au=au (4.25)
and

Av = av. (4.26)

Assume that a#0, then the following calculation using
(2.17) and Proposition 4.3 shows that {u,v) is real:

alu,w) = (Au,w) = {4 *vu) = alv,u). 4.27)

Hence Gram—-Schmidt orthogonalization involves only real
coefficients and therefore orthonormal vectors obtained by
the Gram—Schmidt process will be eigenvectors of 4 belong-
ing to a.

Finally assume a = 0. In this case span {u,v} belongs to
the kernel of 4 and every nonzero vector in the kernel is an
eigenvector of 4 belonging to the eigenvalue 0. So again the
Gram-Schmidt process will provide two orthonormal eigen-
vectors belonging to the eigenvalue 0. O

Corollary 4.8.1: Let u,,...,u, be n linearly independent
eigenvectors of a normal semilinear operator A on a complex
Hilbert space 5% belonging to the same eigenvalue a. Then
there exist # orthonormal eigenvectors of 4 belonging to the
eigenvalue a.

Proof: A calculation similar to that in Proposition 4.8
shows that if @ #0, then each inner product involved in the
Gram-Schmidt process is real and if @ = 0, the span of ei-
genvectors is in the kernel and as before every nonzero vec-
tor in the kernel is an eigenvector belonging to the eigenvalue
0. o

The following proposition is a variant of Wigner’s
theorem.'®

Proposition 4.9: Let Ube a semilinear operator on a com-
plex Hilbert space 7#°. Then the following assertions about U
are equivalent:

(i) for every xe 7,

| Uxll = [|xll; (4.28)
(ii) for every (x,y)e#" X #,

(Ux,Up) = (p:x); (4.29)
)U*U=1 (4.30)

Proof: We shall prove that (i) = (ii) = (iii) = (i).
Suppose (i) is true. Then

UG = = llx =yl (4.31)

1Ux]1* = 1], (4.32)

10117 = ll?, (4.33)

NU(x — i) |]> = ||x — ip||% (4.34)
Hence

(Ux,Uy) + (Up,Ux) = (x,p) + (%) (4.35)
and

(Ux,Uy) — (Up,Ux) = — (x,p) + (x). (4.36)
Therefore

C. S. Sharma and D. F. Almeida 2416



(Ux,Uy) = (y,x). (4.37)

Suppose (ii) is true. Then

(U*Upx) = (x), (4.38)

which implies that

U*sU=1 (4.39)

Finally suppose that (iii) is true. Then

Ixll = {U*Ux,x)'"? = (Ux,Ux)"?> = ||Ux||.  (4.40)
0

Proposition 4.10: Let U be a semiunitary self-adjoint op-
erator on a finite-dimensional complex Hilbert space #°.
Then U has a complete orthonormal set of fixed points.

Proof: Let o be an eigenvalue of U. From Proposition 4.9
it follows that

la] = 1. (4.41)

From Proposition 4.1 it follows that one itself is an eigenval-
ue and then the corresponding eigenvector is, by definition, a
fixed point. From Proposition 4.5 it follows that it has a
complete set of orthonormal eigenvectors and it follows
from Proposition 4.1 that each eigenvector after multiplica-
tion by a suitable phase factor belongs to the eigenvalue 1.
Multiplication by phase factors does not affect the orthonor-
mality of a set. Hence U has a complete set of orthonormal
fixed points. [m]
Remark: Given a complete orthonormal set in a com-
plex Hilbert space 5#°, we can define a semiunitary operator
U'by taking each member of the complete orthonormal set to
be fixed points of U and extending it to 7% by semilinearity.
Such a semiunitary operator is clearly self-adjoint, that is,

U=U*¥ (4.42)
or in other words
U?=1, (4.43)

so that it is involutory also.
Proposition 4.11: There exists a semilinear norm pre-
serving isomorphism between . (#°) and /& (F).
Proof: Let U be any self-adjoint semiunitary operator on
. Define L;: () -7 L () by
LyA = UA.
The calculation
L,(ad + BB) = U(aA + fB) =a*UA + B*UB

(4.44)

—a*Lyd +B*L,B (4.45)
shows that L, is semilinear.

Define Ly: L () - L (H#°) by

L,4 = UA. (4.46)
Then

LyoLyd=UUd=IA=A4 (4.47)

shows that 2(; is the inverse of L. Hence L is bijective.
Finally the calculation

ILoA[l= sup |[Udx]|= sup |x]/=I4] (4.48)

shows that L is norm preserving. O
Remark: The Remark preceding Proposition 4.11
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shows that given a complete orthonormal set in 5% there
exists a self-adjoint semiunitary operator on 7 such that
members of the orthonormal set are its fixed points. There
are infinitely many different complete orthonormal sets in
" it follows therefore from the proof of Proposition 4.11

that there are infinitely many norm-preserving bijections
between . (F°) and .¥.L (7).

V. SOME HEURISTIC CONSIDERATIONS

The study of semilinear operators is interesting in its
own right, but our motivation for the study comes from theo-
retical physics where its relevance is conclusively demon-
strated by the work of Wigner'®?° and we hope that our
results, too, will find many applications in physics. The real
success of our results will come only after we have solved an
unsolved new problem in physics with their help. However,
we can demonstrate the relevance of our work to physics by
providing astonishingly simple solutions to a couple of old
problems whose solutions are known to every physicist. We
shall show that the insight gained in our earlier work'> on
this subject enables us to find three involutory two-by-two
complex matrices that anticommute with each other and to
find four involutory four-by-four matrices with the same
property and our solution is achieved without performing a
single matrix multiplication. All we need to know to solve
these problems are the following: (i) how to multiply a com-
plex number by i, (ii) how to interchange two complex
numbers, (iii) how to change the sign of 2 complex number
(by putting a “minus” sign in front of it, of course), (iv) how
to combine these operations, and (v) in order to get the
matrix representations of our operations we need to know
also that a linear transformation which takes the jth member
of an orthonormal basis to the ith one and every other mem-
ber to zero is represented by a matrix which has 1 in the ith
row of the jth column and zeroes everywhere else and that all
matrices are linear combinations of such elementary matri-
ces.

In Ref. 13 we saw that a complex vector space 7~ can be
regarded as a real vector space 7, of twice the original di-
mension. When this is done multiplication by / in " is re-
placed by a linear operator i (denoted by a bold letter) in 7,
and only those linear operators on the real space 7~, that
commute with i continue to be linear operators on the origi-
nal space 7~ when we revert to the original complex struc-
ture. It is immediately obvious that semilinear operators on
7" are linear operators on 7, and only those linear opera-
torson 77, that anticommute with i become semilinear oper-
ators on 7~ when we revert to the original space with its
complex structure.

In a one-dimensional complex space 7~ (each such
space is isomorphic with C as a vector space and we can,
without loss of generalization, take 7" = C) the spaces of
both linear and semilinear operators are one-dimensional,
which means that any linear operator is a scalar multiple of
the identity operator I and any semilinear operator is like-
wise a scalar multiple of complex conjugation c.

Let us regard 7" = C as a two-dimensional real space
7”,. We choose the natural basis in 7”,, so that coordinates
of a complex number a are (a,,a,), where a, is the real part
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of a and , is the imaginary part. What does the linear opera-

tor i corresponding to / do in this space? We know that if
a=a, + ia,, (5.1)
then
ia= —a,+ia,, (5.2)

in other words i takes (a,,a,) into ( — a,,a,). Complex
conjugation ¢ is also a linear operator in 7,; we know that if

a=a, +ia,, (5.3)
then
a* =a, — ia,, (5.4)

in other words ¢ takes («,,2,) into (a;, — ;). We know
from our general considerations that
it= —1I
and
=1
We now use the first part of the following lemma.
Lemma 5.1: Let A and B be two anticommuting linear
operators. Then 4B anticommutes with both 4 and B and
any linear operator C that anticommutes with both 4 and B
commutes with AB.
Proof: Obvious. ]
It follows from the lemma that i, ¢, and ic = t (say) are

three mutually anticommuting linear operators on %7,
= R2 We next compute

(5.5)

(5.6)

(5.7

So all we have to do now to get our solution for anticommut-
ing and involutive two-by-two complex matrices is to find
the real matrices that represent i, ¢, and t and multiply the
matrix of i by the pure imaginary number i so that it too
becomes involutive. What does t do to (a,,a,)? Complex
conjugation takes (a,a,) to (a,,—a,) and i takes
(a;, — a,) to (a,a,). With the help of the rule on matrix
representation mentioned in the opening paragraph of this
section, we can now immediately write down the three ma-
trices we need, namely, i times the matrix of i and matrices of
t and ¢, which are

FS O P O

i o lo—1F 11 ol

They look, apart from the order in which they are written
(which is of no consequence), familiar enough and as prom-
ised we have not done a single matrix multiplication.

Next, to find four involutive four-by-four matrices that
anticommute we do a similar analysis on a two-dimensional
complex vector space ¥~ = C2. The space 7" can be regarded
as a four-dimensional real vector space 7, and we choose a
basis in 77, in such a way that if a vector # in 7" has coordi-
nates (a,,a,) witha, = 8, + if, and a, = B, + i3; thenits
coordinates in 77, are (8,,5,,8:.8,). The choice may seem
a little odd: a more natural first choice could be
a, =B, + if, and a, = B, + if,. However, the choice can
be made in several different but equivalent ways and any
choice will lead to a good answer. The reason for our particu-
lar choice will become clear in due course. Multiplication by

t?=icic= —P*=1L
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i takes a, into — B, + i3; and a, into — B; + iB3,, or, in
other words, the linear operator i in 27, corresponding to
multiplication by / in 7 takes

(,31»62»33,34) into ( — B,, —.33,52»31)-
Conjugation takes a, into B, — i, and a, into 8, — if3,, or
in other words the linear operator ¢ in 7, corresponding to
complex conjugation in 7~ takes

(Bpﬁzsﬁs»ﬁ:z) into (B8,,8,, — B3, — Ba)-

Conjugation followed by multiplication by i will take &, into
B, + iB, and a, into B, + iB,, or in other words t = ic takes

(B1:Ba2P3,Bs) into (By,B3.52.8:).

As before i, ¢, and t are mutually anticommuting and i i, ¢,
and t are involutive. However, we need four such operators,
but Lemma 5.1 tells us that no operator can anticommute
with all three and therefore we can make use of only two of
the three operators we have found so far. If we can find two
nonsingular operators 4 and B that anticommute with each
other and which commute with both i and ¢, then it is imme-
diately obvious that each of the sets {i4,iB,c,t} and {e4,
¢B,i,t} consist of four mutually anticommuting operators
and all we will have to do is to normalize the set to get the
answer we want—a task made easier by the knowledge that ¢
and t are already involutive.

Thus our problem is now reduced to finding two nonsin-
gular operators 4 and B on 7, that anticommute and both
of which commute with both i and ¢. This may come as a
surprise to the reader, but we have already found two such
operators: we have seen that

01 1 0
1 o] and [o - ]
anticommute and we regard them as linear operators on our
two-dimensional complex space 77; then their representa-
tions in 7", as four-by-four matrices are bound not only to
do the same but also to commute with the representation of i.
Furthermore, the first one clearly represents interchange of
coordinates and it makes no difference in the final outcome
whether we interchange two complex numbers first and then
take their complex conjugates or take the complex conju-
gates of the two numbers and then interchange them: thus it
commutes with ¢ also. The second one represents a change of
sign of the second coordinate and a change of sign clearly
commutes with complex conjugation: thus it also commutes
with ¢. Since the four-dimensional representation of both
these operators commute with both i and ¢, their product
will do likewise and we are free to choose any two from the
three operators found in this way. (It is interesting to sum-
marize what we have done to find these three four-by-four
matrices that anticommute with each other and commute
with multiplication by / and complex conjugation if the four-
dimensional real space on which they operate is regarded as
a two-dimensional complex space: for complex numbers
operations of multiplication by / and complex conjugation
anticommute with each other and the product of the two
operations anticommutes with each: thus we have a set of
three mutually anticommuting operators on the one-dimen-
sional complex space C; two of these are semilinear and one
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linear. When C is regarded as a two-dimensional real space
these operators all become real linear and have representa-
tions as two-by-two real matrices that anticommute. These
matrices can be regarded as linear operators on C? and will
have representations as four-by-four matrices if C* is regard-
ed as a four-dimensional real space. A representation cannot
change their inherent properties and so the four-by-four ma-
trices we find in this way will continue to anticommute: since
they are linear operators on C? they commute with multipli-
cation by i and therefore with its representation as a four-by-
four matrix. Furthermore as operators on C? they involve
only interchange of coordinates and change of sign of coordi-
nates that obviously commute with the operation of taking
complex conjugates of all complex coordinates.)

Before proceeding further we note that we are complete-
ly spoiled for choice: First, we could choose the coordinates
of the four-dimensional real space corresponding to C* in a
variety of ways; second, we could choose either {i4,iB,c,t}
or {c4,cB,i,t} as our four anticommuting operators and fin-
ally we can take 4 and B to be the four-dimensional represen-
tation of any two of the following three matrices:

{0— 1] [l O] [0 l}

1 ol lo—1P 11 of

regarded as linear operators on C and then C? regarded as a
four-dimensional real space. The various choices mentioned
above are not exhaustive, for example, we can change the
sign of any of these operators and have yet another choice.
However, it is an inherent property of the problem that
changing the sign of any matrix in the set of matrices consti-
tuting a solution is also a solution and different solutions
obtained in this way clearly belong to the same equivalence
class.

We choose the set {i4,iB,c,t} and the first two of the
three matrices of the preceding paragraph as our 4 and B,
respectively.

The matrix [{ ~¢] interchanges the coordinates and
then changes the sign of the first coordinate, in other words,
regarded as an operator on C? it takes (a,a,) into
( — a,,a,). As we have taken this matrix to be our operator
A, we now compute the action of i4 on (a,,a,): (a,,a;)
obviously goes into ( — ia,,iar;), or in other words i4 takes

(Bpﬁz;ﬂ3a 4) into (33’ - BmBl’ - B2))

where as defined earlier (5,,5,.5:.5,) isthe coordinate rep-
resentation in R* of (a,,a,) when C? is regarded as a real
vector space.

The matrix [ _ 7] takes (a,,a,) into (@, — a,). As
we have taken this matrix to be our operator B, we can now
compute the action of iB on (a,,a,): (a,,a,) obviously goes
into (ia,, — ia,), or in other words iB takes

(B]aﬂbﬂ&ﬁd into ( ‘““»34,3:” —ﬂz’ﬂl)-

We know that

c=t=17
and since 4 and B are four-dimensional representations of i
and ¢ of our earlier problem, we must have

—A*=RB*=7]
so that
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(i4)’= — (iB)*=1.

Thus we have to multiply the matrix representation of iB by /
to make all our matrices involutive. We can now write down
the matrices of i4, / times iB, ¢, and t because we know that

they take (B,,8,8:8;) into (Bs, — BsBis — B2)»
( — iByiBs, — iB2iB)), (BB — Bs, — Ba), and
(BasB3:BosB1):
[0 0 1 0] [0 0 0 —i
0 0 LU | 0 0 i 0
1 o o0 o |0O —i 0 o0}
|0 -1 0 0 | i 0 0 0
BN 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 -1 0| Jo 1 0 o
| 0 O 0 -1 L 1 0 0 O,

Again the final answer is familiar and again we have no-
where done any matrix multiplication (anyway, not by the
usual rules). The various choices we made at various stages
were made in such a way as to ensure that we ended up with
the familiar answer, but any choice at any stage would have
led to an equally valid answer.

All our matrices are self-adjoint and traceless. None of
this is accidental. At every stage we have used transforma-
tions on real spaces that take orthonormal bases into ortho-
normal bases, so all these transformations are not only non-
singular but also orthogonal. They were all chosen in such a
way that their squares were either + Zor — I, which means
that they are all either symmetric or antisymmetric. Sym-
metric real matrices are Hermitian when they are regarded
as complex ones and all the matrices whose squares were

— I were multiplied by i/ and we know that antisymmetric
real matrices multiplied by 7 are Hermitian. Finally self-ad-
joint involutive matrices are unitary, being unitary their ei-
genvalues have unit moduli and since these matrices are also
self-adjoint their eigenvalues are all real. Hence + 1 and

-- 1 are the only possible eigenvalues of these matrices.
Further the four-by-four matrices 4 and B were obtained by
treating linear operators on C? as linear operators on a four-
dimensional real space. We have seen in Ref. 13 that in such
situations all eigenvalues must be evenly degenerate: so 4 (or
B) can have eigenvalues that are all + ! orall — 1 or two of
themare + 1 and twoofthem — 1.Inthefirsttwocases 4 is
either + 7 or — I and in neither case can it anticommute
with any operator: since it does anticommute with other op-
erators these possibilities are excluded so it must have two,
eigenvalues that are 4 1 and two thatare — 1. Thus both 4
and B must be traceless. To prove tracelessness of ¢ and t we
first consider the two-by-two case. They are involutive, anti-
commuting, and self-adjoint. For reasons already stated pos-
sible eigenvalues are + 1 and — 1 and if both eigenvalues
have the same sign the operator is either + for — [and in
either of these cases the operator cannot anticommute with
any other operator. Hence one eigenvalue of each of these
operators is -+ 1 and the other — 1, so that they are trace-
less. For the four-by-four case ¢ and t can be obtained, with
appropriate choice of coordinates, by taking direct sums of
two identical copies of the corresponding operators on C
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regarded as a two-dimensional real space: for an arbitrary
choice of coordinates these are unitarily equivalent to the
direct sums. Hence c and tin the four-dimensional case must
also be traceless.

VI. CONCLUDING REMARKS

We are aware that some readers will say that our analy-
sis in the preceding section is more tortuous than a mere
multiplication of matrices, but the power of the analysis is
demonstrated by the fact that it quite naturally leads us to
other possible answers also.

We have here only solved a problem whose solution is
far too well known, but the novelty of our approach and the
ease with which it led us in the right direction, we hope,
demonstrates the relevance of our method to the study of
spinors and conjugations.

The results we have developed so far are obviously rel-
evant for the further development of the functional calculus
where derivatives are required to be merely additive and not
necessarily linear and also for the further development of the
algebras of additive operators on both complex and quater-
nionic Hilbert spaces. We believe that the new calculus and
the new operator algebras have important roles to play in
modeling physical phenomena. It is manifestly clear that our
work is directly relevant to the study of spin, charge conjuga-
tion, time reversal, and other similar topics in gauge field
theories and we hope this has been adequately demonstrated
by our heuristic discussion in the preceding section. Further
work is in progress and will be reported in due course.
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It is shown that conformal symmetric space-times admitting an infinitesimal conformal
symmetry are either of type O or N. Those of type N represent plane gravitational waves with
parallel rays, provided the Einstein tensor is invariant of the infinitesimal conformal symmetry.

l. INTRODUCTION

Most of the well-known explicit solutions of the Einstein
field equations admit one or more Killing vector fields (in-
finitesimal isometries). Solutions admitting proper confor-
mal vector fields (infinitesimal conformal symmetries) are
scarce. Unlike isometries and homothetic symmetries, the
conformal symmetries do not preserve the Einstein tensor
and place severe restrictions on the space-times. Collinson
and French' proved that a vacuum space-time with a proper
conformal symmetry must be of type N. Recently, Eardley et
al.? have proved that the only vacuum solutions with a con-
formal symmetry are everywhere locally flat space-times
(i.e., of type O), or of type N representing certain plane wave
solutions. As established by Eardley et al.” and Garfinkle,>
asymptotically flat space-times with reasonable energy con-
ditions and a proper conformal symmetry are locally flat
(type O). More recently, Garfinkle and Tian* have shown
that vacuum space-times with cosmological constant and
proper conformal symmetry are of constant curvature; i.e.,
are of type O and represent de Sitter and anti-de Sitter uni-
verses.

Generalizing these results for nonvacuum and non-Ein-
stein space-times, we show that conformal symmetric space-
times (in particular, symmetric ones) admitting a proper
conformal symmetry are either of type O or N. Those of type
N represent plane-fronted gravitational waves with parallel
rays provided the Einstein tensor remains invariant of the
conformal symmetry. Our result exhibits the fact that the
existence of a proper conformal symmetry restricts the con-
formal symmetric space-times (which are in general, of type
O, N, or D as shown by McLenaghan and Leroy®) to be of
type O or N only.

IIl. PRELIMINARIES

We denote by M a four-dimensional space-time mani-
fold, its Lorentzian metric tensor by g, , Christoffel symbols
by I' ., covariant derivative operator by V,, Riemann curva-
ture tensor by R §.,, Ricci curvature tensor by R,,, scalar
curvature by R, and the Weyl conformal curvature tensor by

bed *

A space-time is said to be of type D if the Weyl confor-
mal tensor has two pairs of coincident principal null direc-
tions, of type N if it has four distinct principal null direc-
tions, and of type O (conformally, flat) if it does not single
out any principal null directions. For details on this classifi-
cation we refer to Kramer et al.®
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McLenaghan and Leroy® defined M to be complex re-
current if

+ +
vecabcd =Kecabcd1 (1)

+
where C .., denotes the self-dual part of C,,,, given by

+

C apca = 4 Copeg — i#Cppey), 2)

with * denoting the dual operator, * C .y = }€,,r C, and
i =y — 1. The recurrence vector field X, is, in general, com-
plex. For K, = 0, M is called conformal symmetric space-
time (Chaki and Gupta’) defined by

V.Copoa =0. 3)
Obviously, the symmetric space-times (V. R,,., = 0) are
conformal symmetric; but the converse need not be true. It is
known® that complex recurrent space-times (in particular
conformal symmetric space-times) are of type O, N, or D.
(Note that McLenaghan and Leroy® assumed the recurrent
space-times in their definition not to be conformally flat,
whereas we relax this condition.)

A space-time M is said to admit a conformal vector field
(infinitesimal conformal symmetry) £ if there exists a
smooth scalar field o on M such that

£:8. =208, (4)
where £, stands for the Lie-derivative operator along £. For
o nonzero constant, £ is called a homothetic vector field
(infinitesimal homothetic symmetry) and for =0, £ is
called a Killing vector field (infinitesimal isometry). A con-
formal vector field is known to satisfy the following®:

£, =640, + 60, — 8.0, (3
£R}y = —6V,0, +55V,0,

= (V.08 + (V40 )8bes (6)
£:Ry = —2V,0, — (O0)g.s, €))]
£,R= —20R — 60, (8)
£,Gop = —2V,0, +2(0o)g,, 9
£:Cha =0, (10)

where 0 * = V90, Oo =V, V%, and G,, =Einstein tensor
= Rab - &Rgab .

lil. CONFORMAL SYMMETRIC SPACE-TIMES WITH
PROPER CONFORMAL SYMMETRY

We state and prove our main result as follows.
Theorem: Let a conformal symmetric space-time M ad-
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mit a proper conformal vector field £ Then M is either of
type O or N. In case M is of type N and the Einstein tensor is
invariant under &, M represents plane-fronted gravitational
waves with parallel rays.

Proof: Let us consider the commutation formula®
£§va C gde - va £§C fde

= (£§ er) C{de - ( £§ Ffac )C_l;de

— (£T)C% — (£,TL)Coy. (11)

By hypothesis, M is conformal symmetric and hence we have
(3). Moreover, £ being conformal, we must have (5) and
(10). Consequently, Eq. (11) assumes the form
(52‘7f + 6},0'0 - gafab)C{de - (6£0'c + 5£aa - gacaf)c},‘de

- (6‘{0}1 + 54{0-(1 - gada.f)cgfe

- (‘Safae +6efaa —_gaea'f)cnl:)df=0' (12)
A straightforward contraction at @ and b yields
0,Cta=0. (13)

Use of (13) back in (12) implies

a b
c’c,C =0.

It shows that, either C2,, = 0 (that is, M is of type O) or
o ?o, = 0. Since £ is a proper conformal vector field, o * A0
and hence must be null. This fact, together with (13), proves
that M is of type N and the quadruply repeated principal null
direction of the Weyl tensor is given by o °.

Now, if M is of type N and £,G,, = 0, then it follows
after a little computation that V,V,o = 0. Hence o, gener-
ates a nonrotating, shear-free, divergence-free, null geodesic
congruence. Thus M represents a plane-fronted gravitation-
al wave with parallel rays. This completes the proof.

Remark 1: The metric of a conformal symmetric space-
time of type N can be written (in local coordinates) as®

dss = —2{(1 + e)x* + (e — 1)y*}du?
—2dudr+ dx* + dy?,

where e = e(u) is an arbitrary real function.

Remark 2: The condition “Einstein tensor is invariant
under £ ” stated in the hypothesis of the theorem means that
£ defines a natural symmetry (£, G,, = 0) of Einstein’s field
equations and is equivalent to V,V,0 =0 [as can be ob-
served in view of Eq. (9) ]. For a conformal vector &, this is
further equivalent to £,R ;.; = 0, which defines a funda-
mental symmetry of the space-times, called curvature collin-
eation. (See Katzin et al.® for a detailed treatment of this
symmetry.)

(14)

IV. SYMMETRIC SPACE-TIMES WITH CONFORMAL
SYMMETRY

The theorem given in the previous section holds for
symmetric space-times that are special cases of conformal
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symmetric ones. To characterize symmetric space-times we
assume that the Einstein tensor is invariant under the proper
conformal vector field £. Then, as mentioned in Remark 2
above, we have V,V,0 =0 and £, R ;; = 0. Using the last
equation, Eq. (5),and V,R 2,, = 0, in the following commu-
tation formula®:

£§vaR gde - va £§R gde
= ( £§ er)R {de —( £§ Fﬁc )R ;de
— (£ LR — (£, TL)R Ly,

we can show that ¢ “ is a null vector field and R = 0. More-
over, as V,V,0 =0, we also have ¢ ¢ as a covariant con-
stant. From the obvious relations o,R};,;, =0 and
o,C.q =0, it follows that o, R,. = 0,R,.. We therefore
observe that R,, = Ao,0, (A = const). Thus these space-
times represent plane-fronted gravitational waves with par-
allel rays and have the metric (14) with e = const. The Ein-
stein~-Maxwell equations for these space-times have their
solutions as null electromagnetic fields. Other solutions of
these space-times are directed massless radiation that may be
considered as incoherent superposition of waves with ran-
dom phases and polarizations but the same propagation di-
rection. (See Kramer et al.®)

V. CONCLUDING REMARK

As pointed out in Sec. II, conformal symmetric space-
times are of type O, D, or N. We have shown that the exis-
tence of a proper conformal symmetry restricts those space-
times to be of type O or N only. This supports the fact that
conformal symmetry imposes severe restrictions on the
space-times.
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The factorization of the L operator in a Lax pair {L,4} has been extremely useful in the theory
of integrable systems. For instance, the Miura transformation is obtained by factorizing the
Schrodinger operator; — 32 +u — k%= (—d, + a)(d, + b) requires thatu = k2 —a, + a*
and a = b. In a recent paper an analogous procedure for the factorization of zero curvature
representations was presented. In this paper the theory of this method is developed and applied

to the third-order scalar Lax equation.

I. INTRODUCTION

In Ref. 1, henceforth referred to as I, a method was
presented for factorizing zero curvature representations and
obtaining new integrable equations that could be associated
with the original integrable system. In this Introduction we
review this material and develop it further. The theory is
then applied in Sec. II to the third-order scalar Lax equation.

Let

Y, =Pk)Y, Y, =QKk)Y (L.1)
be a zero curvature representation of the integrable system?
P, (k) — @ (k) + [P(K),Q(k)] =0. (1.2)

The P(k), Q(k) are matrix valued functionals, which we
assume belong to gl(n,C), of the variables in the solvable
equation as well as depending upon the isospectral param-
eter k. Given the zero curvature representation (1.1), it is
convenient to denote the solvable equation (1.2) by {P,Q}.
If (P,,Q,,Y,) satisfy (1.1), then we write (P,,Q,)e{P,Q}.
In particular, assume that (1.2) admits an auto-Béck-
lund transformation (ABT) that can be obtained from a k-
dependent gauge transformation of (1.1). Let (P,Q,,Y;)
and T, denote, respectively, the solutions to (1.1) and
the gauge transformations i/ =0,...,N, j=0,..,N — 1 with
(Py,Q0, Yo) denoting a given “seed” or initial solution. Then

Y, 1 (k) =T;(k)Y;(k), OKiKN-—-1, (1.3)
and the solution (P, ,,Q;, ; )e{P,Q} is given by
Pi+17¥=7"i,x+7}P;, Qi+1Ti=Ti,:+T.'Qi- (1.4)

In principle, there is considerable freedom in the choice
of T, both as a function of k and in terms of the arbitrary
parameters which it contains. It is convenient to think of T
as adding in one soliton although this is not necessary to the
method. For the equations considered in this section this
requires T; to be linear in k.

Let T be one of the gauge transformations introduced
above; then in general 7eGL (n,C). In this case we can apply
the Gauss decomposition

T=A"A*, (1.5)

where A™ is upper unipotent ( 1’s on the diagonal) and A~ is
lower triangular. The decomposition (1.5) is unique if 7 is

* Permanent address: School of Mathematics, Trinity College, Dublin 2,
Ireland.
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nonsingular. If T is singular then A™ is unique. It is some-
times useful to use a weaker form of decomposition in which
A™ is no longer unipotent so that the decomposition is not
unique. This corresponds to the Bruhat decomposition of T
which we write as

T=A"7A", (1.6)

where 7 is a permutation matrix and A* (A~) are upper
(lower) triangular matrices. We can generally take 7 = 1.
Finally, we mention another decomposition that is also use-
ful in the general theory. It gives the usual form of the factor-
izations associated with the modified Korteweg—de Vries
(MKdV) and sine-Gordon (SG) equations,

T=UA™, (L.7)

where U is a unitary matrix and A" is upper triangular.

Factorization problem: to determine the conditions that
T'must satisfy to ensure the existence of an intermediate equa-
tion given by the Gauss decomposition (1.5).

Before considering this in detail we introduce some
further notation used extensively throughout the paper. An
upper index on a quantity labels the intermediate equation;
thus (P4,07)e{P/,Q7} refers to solutions that belong to the

Jjth intermediate equation with j = 0 the initial or seed equa-
tion.

The factorization problem, if solvable, determines at the
ith step the ith intermediate equation {P°,Q} through the
diagram

AFi—] A-i—1

(P77 - (P, —~ (Pjz1,Qi5D).

In all diagrams arrows will indicate maps between the funda-
mental solutions of the zero curvature representations.

Consider the factorization of the ith transform of the
zeroth equation. For simplicity we deal only with the Pequa-
tion—analogous statements about the Q transform are ob-
tained by the replacements P—Q, x—¢:

PO T!=T), + TP,

P!A-“’ — A_+0 + A‘+°P(-) ,

A7Pl= — AL+ PYAC.
There is a distinct difference between these two sets of trans-
forms. First, we consider the ABT for the integrable equa-
tion {P°,Q°} defined by (1.9).

(i) The integrable equation is k£ independent.

(ii) Constraints are imposed on T? to ensure that

(1.8)

(1.9)
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(P?,,,Q7,,) satisfy the linear system (1.1) defined by
(P?+ laQ(i)+ 1:Y?+ 1 )

(iii) The complex k-analytic structure of T'¢ determines
the ABT.

(iv) In general, T belongs to the gauge group
(GL(n,C)).

Usually point (ii) is hidden in the a priori assumption
that (P?, ,,Q7, ,) satisfy (1.1) and the constraints are not
explicitly derived. The following example will clarify these
points. Let E, ;: = (8,;6,;) jcu,0<s be the nXn matrix with 1
in the jj th position and zero elsewhere.

A. The AKNS system
The AKNS system (Ref. 3) involves s1(2,C). Put
h:=E, —E,,e<=E,f =E,. Then
PYk) =kh +qe+r.f,
Q0(k) = A,(k)h + B,(k)e + C.(k)f,
and (1.2) gives, for {P°,0°},
A, +rB—-¢qC=0,
q, — B, +2kB—2q4 =0,
r,—C,—2kC+2rd=0.

Then as is well known the integrable equations are obtained
by expanding 4, B, and C as Laurent series in X whose coeffi-
cients are functionals of ¢ and r. Viable reductions of the
system occur for

i)r= -1,
(ii) r=€q9 = €q,
(ili)r=¢9, €= +1.

In particular, the following forms of well-known equa-
tions are obtained:

q, +649q9, + q,, =0 (the KdV equation),
r=—1, A= —4k3—2kg—gq,,

B= —4k’q~2kq, — 20" — q,, ,
C=4k? 4 2gq;

q. — 64°q,. + g5, =0 (the MKdV equation) ,
r=—q=—q, A= —4k>—-2kq’,

B= —4k’q~2kg, — g2 — 20,
C=4k%q — 2kq, + g, +2¢°;

u, =sinu (the SG equation) ,
—r=g=g= —lu,, A= (1/4k)cosu,
B=(1/4k)sinu, C= (1/4k)sinu .

Let T: = TY be linear in k; then in order for it to define
an ABT of the system {P°,Q°}, the k-analytic structure of
(1.8) requires T to satisfy the following conditions:

[h,T(0)] =0,

P?, ,(0)T(0) = T(0), + [T(0),h ] + T(0)P(0),

P2, , (0)T(0) = T(0), + T(0)P3(0),
where T(k) = d, T(k) and P? | (0) isinterpreted as an off-
diagonal matrix. This system can be solved to obtain the
ABT, and T(k) can be written in terms of the /th and
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(i + 1)th variables. Under the conditions g¢,,7;—0, as
X— + o0, we obtain
ViGix — V294 1x
=qis1P2— 4P+ (g 102+ 90 1
Wipx — Volix
=r = rPr— (rig i+ 1) s

where

Jivrit =f (Givr1?ip1 — q;r;)dx

and v;,p; are constants. The transformation T' can be writ-
ten as

TY:=[vk+4(p, —vJi 1) | B+ 3(qi0y — 4,41 0)Ey,
+4(ri 10 —10)E;,
+ [vk + 42 + v 1) 1 Enp

If we consider (1.9), then in general (P},Q}) are func-
tions of k so that if the intermediate equation exists it is also a
function of k. If A, is nonsingular, then (P),Q}) is ob-
tained from (1.9) without any constraints. From Eqs. (1.8)
and (1.9) we get, without assuming the transformations are
nonsingular, that

{P?+l,:_‘Q3+1.x+[P?+l’ ?+l]}T?
=TY{P), — Q% + [P1Q7]}, (1.10)
{P,, -0, +[PLQI1}IA®
=Aa+o{P?t— ?x+ P?’ (1) }s
’ Q. [ 0 ] (1.11)

A7AP, — Qi + [P1QI]}
={P(i)+l,t '—Q?+ x + [P?+I’Q(i)+1 ]}Ai—o-

For (PSQNE(P°Q°, (PS, 0%, )e{P%,0°) pro-
vided T'? satisfies the constraint conditions or, equivalently,
the solutions of {P°Q°} corresponding to (P%Q9),
(P?,,,09,,) are connected by an ABT. In this case
(PY, 1,07, ) elP°, 0} evenif T?issingular. Suppose T'is
singular at k=k_,, det T9(k.) =0; then we define
S?(k,): = T9(k.) and usually write S 9(k) for simplicity. If
T? is nonsingular then Egs. (1.11) show that {P',Q'} is
identically zero. Therefore in order to obtain a nontrivial
intermediate equation it is necessary that 79 be singular.
Assume S (k) exists; then S = A, °A+%and A, ®is singu-
lar. In this case the second equation in (1.9) imposes con-
straints on (P),Q}) that define Bicklund transformations
between {P°,0°} and {P',Q'}. Equations (1.11) show that
thisconstrained (P},Q )e{P,Q '}, whichisnontrivial when
(P°,0%e{P°0Q°}.

Proposition 1: (a) Let {P°Q°} be a given integrable
equation that admits an ABT defined by the gauge transfor-
mation T°,

TO

(P?,Q?) - (P?+ 1 9Q?+ 1 )
If T° = A—°A*%is the Gauss decomposition, then a neces-
sary condition for the existence of an intermediate equation
{P',0 '} defined by
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A;fo -0
L

A
(P?,Q?) - (P.lsQul) - (P?+1’Q?+1)’

(PLOHe(P',Q'}, is that there exist k =k, for which
S°(k,): = T°(k,) is singular.

(b) Fork #k,, T°(k)eGL(n,C) and the Gauss decom-
position is unique. The singular transformation S °(k) does
not have a unique Gauss decomposition; however, A°, - is
unique and belongs to the gauge group. Then S°(k,_) can be
viewed as a limiting form of a family of nonsingular gauge
transformations with unique Gauss decompositions.

As an example we consider the AKNS system.

B. The first intermediate equations for the AKNS
system

Put A+ (a): = El] + aE12 + E22: A~ (b,c,d): = bE“
+ ¢E,, + dE,,; then using T'J defined above, the Gauss de-
composition T3 = A; °A; % where A% =A% (a,),
Ay % = A~ (by,cody), gives

a,=1(v,90 — v,9:)/(kv, + 4(p, — v1J50))s

bo=v,k + 1(p, —v\Jy0) »

co = 3(vyry — vy1p) ,

dy = 1(k)/(kv, + §(p, — v/ 10)) »
where

I(k): = kv, + Yk(v, py +v2p) + ipp..

In deriving this expression for d, we use the relationship
(0171 — v219) (019 — V24,)

= — (v p— v p )Mo — Vi Do

obtained from the ABT given above. It is clear that the criti-
cal values of & for which the transformation is singular are
given by /(k) = 0. Thus the factorization of S (k) gives
Ag % =A% (ay), Ay % = A~ (by,cp,0). The second relation
in (1.9) now imposes a constraint on Pj, and the Bicklund
transformations relating {?%,Q°} and {P',Q '} are obtained
from Egs. (1.9): '

Pl:= (k+agry)h+r,f,

Qo= (Ao + a,Co)h + G, f .
For the cases which we consider we have Table I.

We use the facts that ¢, = const when r= — 1 and
a, = — co/b, when r = — g = — g to obtain these results.

The first intermediate equations can now be obtained
from (1.2) using the expressions for P},QJ derived above.
For the cases of interest see Table II.

The intermediate equations for the MKdV and the SG

are more naturally associated with the factorization (1.7)
with

TABLE I. Conditions for the existence of an intermediate equation.

TABLE II. First intermediate equations.

Seed equation First intermediate equation

g, +699, +¢,=0 a,— 6azax + 12kaa, + a,, =0

qr_6qqu+73x=0 U,+[sz+3k2U2+i(UZUi/(1—U2))]X=O
u, + iy, + 4l + 6ku, sin’ u=0

withv=2a/(1 + a*) =sinu

u,=sinu v, = (1—k22)"?sinv
with a =tan Jv
cosf —sind
v= )
sin @ cos 6

These Béacklund transformations are Miura transforma-
tions. That is, the transformations are (for fixed k) 1-1 in
one direction and 1-o in the reverse direction. They are
called Biacklund transformations of type I, in the classical
literature,* whereas ABT’s are of type IIL. The usefulness of
Miura transformations and ABT’s lies in the fact that the
transformed equation does not involve the seed solution of
the source equation. In general, though, this is not the case.
In this paper we will only consider intermediate equations
that admit ABT’s and are derived from Miura transforma-
tions.

The derivation of the first intermediate equation given
above is easily extended to define a hierarchy of intermediate
equations associated with a given seed equation. At each step
we obtain by this process a zero curvature representation
and an ABT for the intermediate equation.

Consider the seed equation {P°Q°} and the family of
transformations {7°°} that satisfy Proposition 1. Let
T3,T9,T? be the transformations defining the ABT’s,

T3:(P5,@0)—(P1,Q1), T9:(P5,Q5)~(P2.03),
T3:(P3,09) - (PS.0%) .
Let S =A; %A% S9 = A;°A;+° be the corresponding
singular transformations of T3 and T'9. Then an ABT for
{PL,Q'}, Tt (P3,Q3)—(P1,21), is defined by
Ti:=(AOTI(A;D L.
The transformation factorizes and defines the second inter-
mediate equation provided S exists. From the definition
this requires 7' to be singular. This process can be repeated
an arbitrary number of times and defines a hierarchy of in-
termediate equations. Zero curvature representations and

ABT’s for the equations are obtained at the same time. The
process is depicted in Fig. 1.

r= —1 r=—q=—a

BT

2
go=2apk — a5 — a,,

g, =2apk — @} + aq,,

9= (2apk —a,,)/(1 + a3)

g = (2apk + a,,)/ (1 + a})

+0
A

(PS,09) — (P3,Q4)
Ag®

(PéxQ(])) hnd (P?’Q(l))
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FIG. 1. The hierarchy of intermediate equations and Bécklund transforma-
tions associated with a zero curvature representation {?°,0°}. Moving be-
tween variables connected by an oblique line to the right corresponds to a
transformation to the next intermediate equation, causing the previous
transformation to become singular. This requires that the component of the
transformation defining an ABT of the seed equation should be singular.
The transformations defining ABT’s of the seed equation are the vertical
lines in the diagram and a singular transformation is denoted by a broken
line.

In general, though, the hierarchy does not belong to the
class we consider and usually only the first intermediate
equation is of the required type. Thus the second intermedi-
ate equation associated with AKNS equations for which
g= —r= —T7is found to be derived from the type III
transformation

a,, — 2ka,
+ [(2kay — ao,)/(1 +a3)] +a,(a; +24,) =0,

which is not a Miura transformation. The new equation in-
volves both the variables @, and a,.

Although this method provides a technique for deter-
mining the factorizations it is not very efficient because the
determination of the gauge transformations 7" which define
the ABT’s and the singularity conditions involves consider-
able work. However, solution of the following problem pro-
vides an efficient algorithm for determining intermediate
equations.

Miura problem: Let {P°Q % be an integrable system
with zero curvature representation (1.1) and suppose it admits
gauge transformations [T Yk)} which determine the ABTs.
Then T°=A—%A"*%s0 that A*° is unique even when T °is
singular. Determine the Miura transformations defined by
[879.

To see how this works consider

Af%=A%(a) =1+ a;E;, Pg=3pye;,

i>i ¥}
and for simplicity assume the nonzero p; are functionally
independent. Then we get

Py =(A} (@) + AT (@)PQAM ()7,
Q= (@) + A" (@)QP)A* (@) 7"
A Miura transformation is a special Biacklund transfor-

(1.12)
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mation of type II. It is defined by a set of relations which can
be resolved for the nonzero p; into the form

Pij = Ej (alm !alm,x""’alm,Nx) ’ N>1 ‘ (113)
The number of variables a,,, that appear as arguments of the
F; is the same as the number of nonzero variables p;. The
first relation in (1.12) defines first-order transformations of
this type. They are obtained by equating to zero all the en-
tries in P that involve a derivative a,,, . This gives a set of
linear equations for the p;. The Miura transformations are
the consistent solutions of this system of equations. Since
usually the p; are functionally related (i.e., the integrable
equation is defined on a jet bundle) several cases arise. The
first intermediate equation is determined from (P},Q})
e{P',Q '}ordirectlyfrom (1.13) and {P°,Q°}. Notethat Q }
is obtained in the same way as P, from the second relation in
(1.12). Usually, however, it is the P equation that contains
the undifferentiated functions which define the Miura trans-
formation. It is certainly true for the cases we consider. If the
relations obtained from the second equation in (1.12) have
the form (g, #0)

qij = Gij(alm’alm,n"'ralm,Mt)’ M>l 4 (114)
then since the g;; are functionals of the p;, the Miura trans-

formation can also be used to determine the first intermedi-
ate equation from (1.14).

C. AKNS (r=—1)

The relations (1.12) are, with A;"° = A* (ay),

Py = (k—a)h+pe—f,

Q0 (4o +aCo)h + ge + Co f,
where

P2 =05 + 4o — 2kap + a,

g, = Go, + By — 2448, — a5C, .

The Miura transformation is obtained from p, =0. The
equation g, = 0 gives, with the use of the Miura transforma-
tion, the first intermediate equation. This is the same as that
obtainedfrom (P},Q0)e{P',Q '} withP] = (k — ay)h — f,
Q! = (4o + a,Cy)h + C, f given earlier.

Proposition 2: A solution of the Miura problem provides
necessary and sufficient conditions for the existence of a so-
lution to the factorization problem.

Proof:Let (P},Q5)e{P',Q '} bedefined by asolution to
the Miura problem for a given (P9,03)e{P%Q° and A*.
Suppose (P2,09)e{P°Q°} is another solution and deter-

mine A~ algebraically (i.e., derivatives are treated as inde-
pendent variables) as a solution of
AP} = — A7 +PA~, AQi= —A7 +0Q%A.
Then if a solution exists S = A~A™ is singular by Proposi-
tion 1 (since all viable factorizations are singular). In partic-
ular, let T9(k):(PJ,025)—(P9,Q%) and let TQ(k)
= Ay °A; ° be its Gauss decomposition. Then a solution of
the factorization problem exists if A" %A, ° can be made to
satisfy the same conditions as A*,A~.
It was mentioned earlier that we obtain an equation of

the required type only for low orders of factorization. How-
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ever, in I we indicated a procedure whereby the class of inte-
grable equations associated with a given seed equation by
factorization can be enlarged.

Let (P (k;),Q5 (k))e{P%Q°}, i = 1,..,m; that is, we
choose a set of zero curvature representatives that give the
same solution of {P°,Q°}. Then we can canonically embed
this collection of representatives in a zero curvature repre-
sentation associated with GL(nm,C) by putting

Y,=($ Pg(k,.))y, Y,=(i§lQ8(k,.))Y.

i=1

The additional degrees of freedom admitted by the larger
problem allow new classes of equations (i.e., involving more
than one parameter) connected to the seed equation by fac-
torization to be found. A further extension would be to ad-
mit the derivative equations satisfied by Y, (k): = d//dk’
X Y(k),j = 1,...,l, into the scheme. We do not consider this
aspect of the theory in this paper.

1t is also possible to apply a suitably modified form of
factorization to supersymmetric extensions of zero curva-
ture representations. For example, the supersymmetric ex-
tension of the AKNS scheme has recently been developed by
Giirses and Oguz.’

Thus the Miura transformation for the super KdV (Ref.

6),
4= — @3 — 6qq, — 12(e¢,) .,
€ = — 46, —6ge, —3q,€,

is given by

2
= —a,, —2ka, +a,,a,—a,",
€= —‘aZ,Ekaz —alaz,

where a, is an even and a, an odd Grassman algebra valued
variable. The next factorization also yields a transformation
of Miura type, but the transformation cannot be brought
into the canonical form (1.10).

The intermediate equations for the AKNS system were
first derived by Chen’ by introducing projective coordinates.
If we consider the cases (i)—(iii) given above, then if
8, 0°,09) are, respectively, the first column vectors
of the solutions Y},Y3, where Y = A%+ (a,) Y3, we get
/vy = 0/y) + a,). Itis clear that (! = 0,p})‘is a solu-
tion of the zero curvature representation for the first inter-
mediate equation for which the corresponding solution is
ay= —)31/).

The loop group associated with the zero curvature rep-
resentation of the AKNS system is GL(2,C[k ~',k]). We
also have that 7%GL(2,C[k ~',k]). However, any of the
standard decomposition theorems for loop groups such as
the Birkhoff or Bruhat decomposition are trivial because T'9
asanelement of GL(2,C[k ~',k]) isalready “upper triangu-
lar.” It is interesting to note that the factorizations
A* (ay),A™ (bgycod,) are elements of the completion of
GL(2,C[k ~',k]) since they involve formal series expan-
sions of the type

(1—k)'= zki.
&z
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Il. THIRD-ORDER SCALAR LAX EQUATIONS

Consider the third-order scalar Lax equation

L=3)+u,d, +u,. 2.1
If we choose
A=ai+§ul, (2'2)

then the Lax equation L, = [4,L] gives the Boussinesq
equation,® when u, = Jv, + w, u, =v,

Vi = — $ax + 2(”2)2x)-

In this case we will apply the factorization method to a first-
order system associated with Ly = k¢,

Y, =P2Y,
P8:= (g~ k>)E3 — Ey; + t,Eys — Es, . (2.3)

This is the adjoint of the usual first-order system. Provided
we allow arbitrary T(k) to define an ABT gauge transforma-
tion and not just those linear in &, this system admits an
ABT. In I we transformed the system to one that admitted a
linear T(k). Unfortunately this introduced cubic roots of
unity into the problem and also led to some unnecessary
restrictions.

We assume that (2.3) is part of a zero curvature repre-
sentation of anintegrable equation {?°,Q °}. Theequation set
is clearly nonempty since it contains the Boussinesq equa-
tion with Q § derived from the operator A4 above. The reason
why we leave Q3 free is because factorization leads to a num-
ber of canonical forms for PJ, and the Q] derived from 4 is
too restrictive to apply to all cases.

We determine P} from the first equation in (1.9) using
A*(a): =1+ a,E,, + a,E ; + a;E,,. This gives

Py = —a,E, +p:Ey, + pEs

— E;, + (a) — 3) Ex; + peErs — Esp + 3E;5;,
pr=a— G +ai, (24)
Ps=0y, +au +uy—k*+aga,,

Pe=03, + Uy +a,—us(a, — a;) .

If we apply the theory of the preceding section then p, =0,
ps =0, ps = 0. For given sufficiently smooth functions w,,
u,, an initial value problem for the resulting system of inho-
mogeneous equations has, for fixed ¢, a unique solution. Con-
versely the system can be resolved algebraically to give a
unique solution for u, and u, and so defines a Miura trans-
formation for the system

2
a=a,+a,

2 2
U= —a,, —a,,—a —a +aa,, (2.5)

up=k>—a,, —2aa,,+ a,a;, +a,a; —dia;.
If we put @, = y + z, a; = y — z, then this is the same trans-
formation as obtained in Ref. 9 with k = 0.

We observe that with this factorization the correspond-
ing first intermediate function P}, obtained from (2.3) does
not depend explicitly on k. For this reason we use the less
restrictive Bruhat decomposition of 7(k) and take
A (a): =diag(k 3k "2k ~HAT (@), Ay (@):=A"(a)
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X diag (k 3,k %,k). Then we obtain the same Miura transfor-
mation (2.3), but for P} we get

Py = —a,E\, —kE, + (a, — @) Ey; — kE3; + a3E5;.
(2.6)

We note that a restricted form of the Miura transformation is
given by £ = 0in (2.5). In fact, this form of the Miura trans-
formation can be obtained by a modification of our proce-
dure without requiring k = 0 in P 3. The corresponding first
intermediate zero curvature function is

P(l)(rcs):=P(lJ_kE13'

The second intermediate equations are associated with
Gauss decomposition of ABT transformations 7(k) asso-
ciated with zero curvature representations of {P',0'} with
P! defined by (2.6). In this case the resulting function P3
still depends upon £, so that a more general factorization is
not required. Put Ayt ': = A* (b) and we find in this case
that

Pl:=(—a,—bk)E, —kE,,
+ (@, — a3 — k(b; — b,))E,,
—kEs; + (a3 + kbs) Es; .
The Miura transformation is determined from
by, +b,(2a, —a;) +k(b? —b,) =0,
b, + by(a, +as) + kbb, =0,
by, + by(2a; — a,) + kb, + kby(b; — b;) =0.

It follows from the theory of Sec. I that we obtain a Miura
transformation when b, = 0. There are several degenerate
cases in the resolution of (2.7) for a, and a,. They are (i)
a, = 0,a;7#0; (ii) a; = 0,a,#0; and (iii) @, = aa,;, a a con-
stant. An examination of (2.3) shows that for each case we
require k=0 and then we find that (i) #,=0, (ii)
Uy = u, ., (iii) uy = Lu, , anda = 1. These are just the cases
that arise in the factorization of the scalar Lax operator L.>'°
The scalar operators corresponding to (i) and (ii) are ad-
joint and give rise to the same hierarchy of integrable equa-
tions. The operator is usually called the Sawada—Kotera op-
erator after the lowest order nontrivial integrable equation
obtained from a Lax pair.'' Similarly the operator corre-
sponding to (iii) is the Kupershmidt operator.

The Miura transformation for the system {P2,Q?} ob-
tained from (2.7) is

a;—2a,=b,,/b, + kb,,
a,—2ay=>b,,/b;+ k(b;— b)) .

2.7)

(2.8)

Wenote that Egs. (2.5) and (2.8) are the Miura transforma-
tions for the first and second factorizations even when spe-

cialization occurs in the seed equation.
If

Ay °=A"(c):=c,E + By

+ 3By + C4E5y + ¢5E5y + CoEs
then necessary and sufficient conditions for the existence of a
solution to the first factorization problem are obtained from
Egs. (1.9). Thus from the Ag,° equation we get
C3=C5=C6=Oand
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C1x + (Bo+k%)ey—cia,=0,
CZ,X + Cl - 1_11C4 + ach = 0 ’
04_x +C'2—C4a1 =0,

where (#,,%,) correspond to a second solution (P?,09)
€{P°Q"°}. These equations together with the set obtained
from the Ag.° equation give the conditions for the existence
of a solution to the factorization problem. Thus if

TS: (P3,00)—(P1,09)el(P’Q°%
then T factorizes and defines an intermediate equation
{P',Q'} provided there exist values k = k. such that
T9(k,) =S (k.) = Ay °Ag" ° and the components of Ag °
satisfy the above conditions.

We write out explicitly the equations obtained by factor-
ization of the Boussinesq system. The Boussinesq equation
corresponds to u, = v, + w, u; = vin the system below.

Seed equation: Boussinesq equation:
Py =(uy—k*)E,; — E,; + u,E,; — Es,,
Q%= —u,E\ | + (uo—3u,, — k*)E,,

+ (Yo — 3412 ) B3 + Ju, By

+ (4o — k> —Ju,  VEy3 — Eyy + {u,Esy
U, + JUy 3 — Ugax + U, =0,

Uy, + Uy —2u, =0.

First intermediate equation: Modified Boussinesq equa-
tion:

Py = —a,E,, —kE,, + (a, — 05)Ey; — kEs; + a,E5;,
Qo = (—3u;, — a))E;, — G:KE,, + (Ju, + a,a,)E,,

— k*Ey + a\kEy, + (Qu, + a, — a,a3)E,y;
a,, +i(—a,, +2a;, —a’+2a’—2aa;), =0,
as, +4(2a,a, + a5, —2a,, +a,* —2a,?) , =0,
wherea, =a, , +a,>.

Second intermediate equation: Modified-modified Bous-
sinesq equation:

Pi=(—a,—bKk)E, —kE; +(a; —a;
— k(b3 — b)))E;; — kE3, + (a3 + kbs) E;,
Q5 =(—3u, —a,—abk)E,,
+ ( — azk — k*b3)E,; + (Ju, + a,a; + kbsa,
+ kb,as + k?b,by)E,, — k*E;, + (ka, + k*b,)E;,
+ (Ju, + a, — a,a; — ka,by — k*b,b,) Es;
3¢, — 22 — @ox — Gx — 294 — 2kq, €
+ 2k(p, +9.)e? =0,
3p, + Pox + 242x + P} + 204, — 2kp,e”
+ 2k(q, +p,)e?=0,
where b, = ¢?, b, = €.
At the next factorization general Biacklund transforma-
tions are obtained.
The factorization process associates one-parameter
families of equations with the original seed equation. By us-
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ing the embedding process we can increase the number of
parameters. We consider the canonical embedding of the
Lax operator in sI(6,C). Let

PY:=PJ (k) @ PJ(k,), (2.9)

where PJ (k;) is defined in (2.3). Let W be the row vector
formed from the rows of the upper triangular matrix
I+ fE;GL(6,C).
J>1

Relabel the elements f; in W sequentially a,,a,,...,a,5 so that
a,=f,, and a,; = f;s, for instance. Denote the relabeled
triangular matrix by A* (@). Determine the Miura transfor-
mations associated with P and A™ (a). Then it is easy to see
that the transformations are only the canonical ones ob-
tained previously since u,7#0 and u,7#0 (all the other g;’s
are zero):

2
a=a;, +4a,
— 2 2
U= —Gagx —dyx —4d; —ag —a,4¢,
— 2
Ay =d;, +ds,
— 2 2
Uy = —Qysx —Qy3,x — y3 — dis — di3lys,

— 173 2 2
U=k — ay33, — 20,583, + 81385, + 1315 — G305

The second factorization contains new possibilities. We
find that with P}: = P} (k) @ P} (k,) and A ': = A* (b),

Pil:=(—a,—bk)E, — kE, +(a, —a,
— ky(bs — b\))Ey; — K\Es; + (a6 + kybe) Ess
+ (—a13 = Kyb13)Eqq — krEsqy + (a1 — ays
— ky(bys — by3))Ess — kyEgs + (a5 + k2blS)EE2661i)

The Miura transformation consisting of four independent
equations is to be resolved from the following system:

b, — kb, +b,(2a, —ag) + kb2 =0,

b,, +blag+a,) + kb b, =0,

by . — kyby + bs(a) —ay3) + kibiby =0,

by — kobs + by(a;; — a5 +a,) + kb by =0,

bs. -+ bs(ay + ays) + kibbs =0,

bex + kyby + b(2a5 —ay) + kb? —kbbs=0,

by + kiby — kybg — by(a, — ag + a,3) + kg,
~ kibib; =0,
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bg, + kiby — koby + bg(ays — @15 — @, + ag) + kybeb
—kibbs =0,

byx + kibs + by(a,s — a, + ag) + kybeby — kb by =0,

biox — kabyiy + kiby — biolag + ay3) — kybghyo =0,

by x — kobiy + kibg + byy(ay; — ays — ag) — kibeh,, =0,

byy . + kiby + byy(ays —ag) — kibsby, =0,

bysx — kobis+ b13(2ay3 — ay5) + kb i, =0,

biax +bi4(ays +ay3) + kyb13byy =0,

bysx + kobia + b1s(2a;5 — ay3) + kpbis — kybyshys=0.
(2.12)
An obvious solution of these equations corresponds to
the canonical embedding. However, there are other solu-
tions. For example,

(a, —2ag)bs=bs, + kibZ,
(a6 + a,3)byo = b1 x — kybyy — kybyobs (2.13)
(a6 — a3 + a15)byy = by x — kybyy — kybeby,
(a6 — a15)by3 = byy  — kibshys s
with all other b,’s zero.
This Miura transformation defines a {wo-parameter
equation associated with the Boussinesq equation. By the

methods of this paper we also obtain a zero curvature repre-
sentation for it in s1(6,C).
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It is shown that, for the system of first-order ordinary differential equations of the form

dx®/dt = f° (x*), it is always possible to construct a locally defined nondegenerate symplectic
structure 2, (x), and write the equations as the canonical equations for some Hamiltonian
function H(x) such that £}, = V, H. Furthermore, a Lagrangian L(x,x), which is linear in
the velocities dx® /dt, can be found, whose variation yields these same canonical equations.
Finally we discuss, via the Dirac brackets, how the standard transition from a Lagrangian
system to a Hamiltonian system works in this pathological case.

I. INTRODUCTION

We consider a system of ordinary first-order differential
equations of the form

dxa —a__ fas.b

= Fx)

on a 2N-dimensional' manifold .#. There appears to be a
common misconception in the literature,”* namely, that sys-
tems of equations of the form (1.1), with dissipation, do not
possess a Hamiltonian structure. It is one of the purposes of
this paper to point out that this is not true; i.e., all systems of
the form (1.1) do possess (locally or frequently globally on
the original manifold or on the covering space) a Hamilto-
nian structure. Though this fact has already been pointed
out,* the issue continues to be misunderstood in the discus-
sions of chaotic systems. We thus felt it was appropriate to
discuss it once more.

We will show that .# can be given (locally) a symplec-
tic structure and (1.1) can be written as the canonical equa-
tions of motion for some Hamiltonian H(x) and the asso-
ciated nondegenerate symplectic form 1, so that it
becomes

x* =V, HQ™. (1.2)

Furthermore we show that there is a simple (but in general
pathological) Lagrangian L(x,x) given as a function on the
tangent bundle of .#, which is linear in the velocities x°,
whose Euler-Lagrange equations are essentially (1.2),
namely,

x°Q, =V,H. (1.3)

Note that in this pathological situation .4 is now playing
the role of a 2N-dimensional configuration space. In the at-
tempt to go, in the standard fashion, from this Lagrangian
based on the 2N-dimensional configuration space to a Ham-
iltonian formalism, the new phase space should be 4N di-
mensional. We show that, using the Dirac>® theory of con-
straints (the constraints arising from the pathology of the
Lagrangian), the resulting phase space is again the 2NV-di-
mensional manifold .# and the canonical equations are still
(1.3).

We illustrate the above ideas with several examples in-

(1.1)
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cluding the case of the one-dimensional damped harmonic
oscillator.

The problem discussed here arose in our attempts’ to
understand how to construct a quantum theory associated
with classical equations of motion for which there does not
exist a standard Lagrangian version. Physical examples of
systems of this type abound, as for example, all Yang-Mills
theories based on groups for which there does not exist a
nondegenerate quadratic form. It becomes clear that even in
these cases Hamiltonians do exist—but what to do with
them is not so clear.

Il. THE HAMILTONIAN AND SYMPLECTIC STRUCTURE

On the manifold .#, we wish to introduce a (local) sym-
plectic structure [ making .# (locally) into a phase space] in
the following fashion. We require a two-form 1, to satisfy
the following conditions.

(1) It must be Lie-dragged by the vector field /¢, i.e.,

L =f V.0 + QY f4+Q,V, fC=0.  (2.1)

{2) It must be nondegenerate, i.e., it must have a unique
inverse (1*® with

ﬂabﬂu = 6aC .

(3) It must be closed, i.e., V. £, =0, and hence be
locally exact. Thus

Q= vaeb - vbea

for some one-form ©, which plays an important role in what
follows.

It is easily seen that such a two-form does exist, at least
locally. By introducing coordinates so that the integral
curves of (1.1) are constant on 2V — 1 of them and on the
last x' = ¢, the field f* takes the simple form f° = §,°.
Equation (2.1) is then satisfied by a constant ) and thus the
remaining conditions are easily satisfied.

Once a symplectic form is found, a Hamiltonian H(x)
can be defined by

V.H=/[Q, (2.2)
or equivalently by
H=f0O,.
© 1988 American Institute of Physics 2430



The integrability conditions are satisfied by (2.1) and the
fact that Q,, is closed. We thus have

X =V, HQb . (2.3)

[Note that though we are using the original coordinates x*
on .# given with f“, we could have switched to canonical
coordinates %* = (¢',p,) = %° (x). There is, however, no
compelling reason to do so.]

lil. THE LAGRANGIAN

Given a Hamiltonian, the standard variational method
to obtain the canonical equations is to vary the p’s and ¢'s
independently in the expression

L(g,p) =qp; — H(qp) . (3.1)
If, in the canonical equations ¢' = dH /dp;, one can solve for
2: =p,;(4,¢), then by substitution into (3.1) a standard La-
grangian L(q,q) is produced. If, however, this cannot be
done, we have a pathological situation analogous to the
problem of passing from a Lagrangian to a Hamiltonian
when p; = dL /3g cannot be solved for §(g,p).

In general one expects this pathological situation. (For
example, if the Hamiltonian is linear in one or more of the p’s
this problem occurs. )

Using our arbitrary coordinates x*, our version of (3.1)

is®

L(x,x) =x0©,(x) — H(x) . (3.2)

It is easily seen that the variation of the x* independently in
(3.2) yields Eq. (1.3), namely, our canonical equations

x°Q, =V, H. (3.3)

As an alternative point of view we can think of (3.2),
with ©, (x) and H(x) as given functions of x, as a Lagran-
gian (linear in the velocities) on the tangent bundle of the
configuration space .# with standard Euler-Lagrange equa-
tions also given by (3.3). We can then ask the question of
how do we pass from the Lagrangian system with a 2N-
dimensional configuration space .# to the 4N-dimensional
Hamiltonian system—and what type of equations do we ob-
tain?

IV. THE HAMILTONIAN AND THE DIRAC BRACKETS

Using (3.2) as a Lagrangian immediately produces a
pathological Hamiltonian system® since the defining equa-
tions for the canonical momenta
p, = JL

Lo
cannot be solved for the velocities, x°. In the language of
Dirac’s theory of constraints they become the primary con-
straints of the Hamiltonian system:

C,=p,—96,(x)=0. (4.2)
Notice that, because the Poisson brackets between the con-
straints become

{C..C} =0, (4.3)

and because of the nondegeneracy of the {1, , the constraints
are all second class and hence can be eliminated, i.e., all p,
can be replaced by O, (x)and the Poisson brackets replaced

=0,(x) (4.1)
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by Dirac brackets. (This reduces the 4V-dimensional phase
space by 2N dimensions to the constraint surface, which is
our original manifold.) The Dirac brackets between the two
functions A4 and B are defined (in this case) by the following
expression:

{A9B}‘ = {A)-B} - {A’Ca }nab{cbsB} .

Notice that if B is a constraint, say, C,, then

{A,Cd}‘ = {A’Cd} - {A’Ca }Qab{cb 9Cd}

= {A’Cd} - {Asca }ﬂabﬂw =0,

i.e., the constraints have a vanishing Dirac bracket with all
functions, including the Hamiltonian.
Formally the new Hamiltonian becomes

44)

Hy =x°p, — L(x°x%)

=x%p, —0,(x))+ H(x) =x°C, + H(x) (4.5)
and thus on the constraint surface
H;=H(x). (4.6)

The canonical equations of motion are then, in the Dirac
theory,

xd = {xd,H}‘ = {xd9H} - {xdyca }Qab{cb ’H}

Qe ?_Ii

=0-—-4&¢
ax®b

or
1=V, HQ", 4.7)

our equations of motion, (1.3). The symplectic structure
associated with the Dirac bracket is thus our original sym-
plectic structure Q.

V. EXAMPLES
A. The damped harmonic oscillator

The damped harmonic oscillator equation, X + ax
-+ Bx = 0, can be written as

x=y=f', y= —ay—bx=f>. (5.1)
Equation (2.1) then becomes
2, —(ay+8x)Q, =), (5.2)

with =0, = — Q. It can be easily solved by the meth-
od of characteristics yielding a (particular) solution

(5.3)
with @, and @, defined by a = — (0, + @,) and f = 0,0,
and v = a/o,.

The equations [(2.2)] to determine the Hamiltonian
are

Q= [(0x—p)/ (0, —a)]",

Qy:%y}!- and Q(ay + Bx) =%§,

with a solution
H(x) = [@y/ (@, — 0)) }(01x — y) (wx — ). (5.4)

In the limit of no damping, with -0 and v, > — @, —iw,
we have that

Q-1 and H-}0? + 0™?),
the undamped symplectic form and Hamiltonian.

(5.5)
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Finally the one-form O, is found to be
O, = (0, 20)y—0x)Q+ P, ,
6, = (0,/20* )y —0x)Q+ P, ,
with ® an arbitrary function of x and y.
Indeed it is a straightforward matter to show that the

general class of time-independent second-order equations of
motion of the form

(5.6)

can be supplied trivially with a symplectic form and a Hamil-
tonian. Simply write the equation as a two-dimensional sys-
tem:

X = F(x,x)

x=y=f", (57

y=F(xy)=f?, (5.8)
where their ratios for the orbit equation are

b _ o) (5.9)

dx y

Assume the solution of the orbit equation is of the form
y= Y(K,x), where K is the constant of integration that
specifies the orbit. Now substitute y = Y(K,x) into (5.7)
and integrate the resulting equation to obtain
x=X(K,1), (5.10)
y=Y(KX(K)}1)). (5.11)
Consider these relations as describing a coordinate

transformation on the orbit space from coordinates (x,y) to
(¢,p) where ¢ =t and p = K, so that

x=X(p.q), (5.12)
y=Y(pX(p,q)). (5.13)
In these coordinates the equations of motion are now given

by
p=0, (5.14)
g=1. (5.15)
The symplectic form is simply
Q,, dx*Ndx*=dpAdyg, (5.16)

and the Hamiltonian is H = p.

This argument is the two-dimensional version of the ar-
gument given earlier for the existence of the symplectic
form.

B. Quadratically “damped” oscillator
Consider the oscillator with a quadratic velocity term
X+ax®+Px=0. (5.17)

Though the orbit equation can be solved explicitly we will
turn to the equation for the symplectic form, (2.1), which
becomes

y-aﬂ—(ayz+ﬂx)@—=2ayﬂ, (5.18)
dx dy
with solution
= —expax (5.19)
and
H =}exp(2ax)(B/2a* — y* — px/a) . (5.20)
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One can easily show from (5.20) that for positive H the
orbits are periodic while for negative values, the solution is
runaway.

C. The ice skate

Sorkin® has suggested that we use this technique to find
a Hamiltonian for the equations of motion of a nonholono-
mically constrained system. He suggested that we consider
the case of an ice skate, a system with three degrees of free-
dom. In this system, (x,p) locates the center of mass of the
skate in the (x,p) plane and © determines its orientation
with respect to the x axis. If I is the moment of inertia, m the
mass, and A a Lagrange multiplier, the equations of motion
are

I6=0, mi= —Asin®, mj=Acos®, (521)
with the nonholonomic constraint

xsin©=pcosO.
Eliminating the Lagrange multiplier [via A = m©(x cos ©
+ysin©)] and rewriting the above equations, with
(x'x*x* x%) = (6,0,x,%), we have

M=x% *=0 P=x 1= -—x**tanx'.
The symplectic form is
0 Sx*/x* 0 —secx’
o< |~ Sx*/x? 0 1 —T/x
0 -1 0 0 !
sec x* T/x* 0 0

with = (sec’x'—secx' —x'secx'tanx!) and T

= (tan x' — x' sec x!) and

= —x*x*secx!.

D. Chaos

One of the underlying motivations for the work de-
scribed here was eventually to try to study the relationship of
aclassical chaotic system with its ““associated” quantum sys-
tem. In order to do this we had hoped that it would be possi-
ble to take a relatively “simple” system, like the Lorenz at-
tractor equations, and find its symplectic and Hamiltonian
structure as a prelude to studying its quantum properties.
However, we have been unable to explicitly integrate Eq.
(2.1) for the symplectic form (aside from the special case of
geodesics on compact, constant negative curvature sur-
faces'® where the Hamiltonian structure is readily avail-
able). The basic impediment to this seems to be the impossi-
bility of finding exact solutions to the equations of motion
for the chaotic system. It thus appears as if the transforma-
tion to canonical coordinates from the “physical” coordi-
nates is, itself, chaotic. It could well be that the classical and
quantum Hamiltonian versions of most chaotic systems are
simple and standard, with the difficulties being in the rela-
tionship between the physical variables and the canonical
variables. It would thus seem that in the definition of a cha-
otic system, one must have a choice of coordinate chart.
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Vi. DISCUSSION

We have seen that equations of the form (1.1) always
have a local symplectic and Hamiltonian structure. We do
not know and have been unable to find any references on the
conditions required to make the symplectic and Hamilto-
nian structure global.

An additional question pertains to the quantization of
an arbitrary Hamiltonian system obtained in this way. In
general, such Hamiltonians do not seem to be amenable to
quantization. This question has not been carefully analyzed.
These Hamiltonians are not, in general, interpretable as the
energy (though they are conserved) and are usually non-
polynomial expressions.

We are extending these ideas to field theory and, in par-
ticular, to cases where there is no obvious Lagrangian, e.g.,
to self-dual Yang-Mills theory.
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Radius-dependent wave-speed functions for two- and three-dimensional inhomogeneous media
are discovered that yield explicit, general, radially symmetric solutions that are wake-free
(tailess). For the corresponding finite regions, the eigenfrequency spectra for radially
symmetric vibrations with Dirichlet boundary conditions are shown to be exactly harmonic.

I. INTRODUCTION

It is well known'™ that the solutions to the ordinary
wave equation in one and three dimensions possess basic
differences from those in two dimensions. )’ Alembert’s gen-
eral unidirectional traveling-wave solution in one dimension
and the general spherically symmetric expanding progres-
sive spherical-wave solution in three dimensions are wake-
free (tailess, clean cut). If a source signal ceases, the distur-
bance at a finitely distanced point will also cease in a finite
time, i.e., sharp signals remain sharp. In contrast, in two
dimensions, for circular symmetry, an expanding circular
wave (or cylindrical wave in three dimensions, independent
of axial coordinate) does not have this property; there is an
indefinitely prolonged tail (wake, reverberation, residual’).

This phenomenon can also be generalized in terms of the
problem of radiation from a given spatially localized source,
thereby relating it to the absence of an indefinitely prolonged
residual effect at another point as a result of the source sig-
nal.2~*%7 Thus traveling waves resulting from general local-
ized sources in odd space dimensions are sharp, while those
in even space dimensions are not.

The Hadamard conjecture® asserts that this overall situ-
ation also pertains for wave equations with nonconstant co-
efficients. Garabedian® has discussed the situation for odd
and even n-dimensional spaces.

In this paper, we show that for certain radius-dependent
wave-speed functions in two dimensions, the general circular-
ly symmetric expanding circular (cylindrical) wave solutions
are wake-free. A sharp symmetric signal at (a circle sur-
rounding) the origin is transmitted as a sharp signal, with
clean cutoff. For one inhomogeneous medium the solution is
unattenuated, but there is radial spreading of the (outward)
traveling waveform. For the other inhomogeneous medium,
the solution also undergoes a change of magnitude, and wave
fronts propagate to infinity in finite time.

These results might, at first sight, appear to be at vari-
ance with the above principles. However, the examples pre-
sented are solutions to wave equations equivalent via certain
transformations to the one-dimensional constant-coefficient
equation. Furthermore, although here we are concerned
only with the explicit, general, radially symmetric solutions,
these would not be the most general solutions to the corre-
sponding full two-dimensional wave equation.

Despite the above-mentioned mathematical equiv-
alence, the resulting radial wave equation formulation is, of
course, physically distinct in that it represents a new two-
dimensional medium. The solutions obtained are of consid-
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erable interest as a novel wave phenomenon for cylindrically
symmetric systems.

A by-product of our approach is the discovery, also in
the three-dimensional case, of a radial wave-speed function,
of an inhomogeneous medium whose wave equation has a
wake-free expanding spherical-wave solution, which may be
unattenuated, and whose wave front propagates to infinity in
a finite time.

This paper may therefore also be regarded as an investi-
gation of operators that allow “relatively undistorted” pro-
gressing wave families, as defined by Courant.!®

Finally, we discuss the eigenfrequencies for radially
symmetric vibrations of the appropriate regions of finite ex-
tent in these inhomogeneous media with Dirichlet boundary
conditions. These spectra are shown to be exactly harmonic.

Il. WAKE-FREE CIRCULAR (CYLINDRICAL) WAVES

It is possible to find nonhomogeneous two-dimensional
media in which circularly expanding waves are wake-free.
To demonstrate this, we make use of the simple fact that
solutions to the one-dimensional wave equation with spatial-
ly dependent wave speed,

(2.1)

yield solutions to the circularly symmetric two-dimensional
wave equation (with radially dependent wave speed)

2
i (Xu,, =u,,

&2(p) [V, + (1/p)0,] = Vs (22)
through the relations

x/L =In(p/R), (2.3a)

v(p) = u(x), (2.3b)

¢ (p) = (p/L) ¢,(x). (2.3¢)

Here, L and R are reference lengths included for dimension-
al reasons, and origins are chosen sothatp = R whenx =0.

Equation (2.2) also pertains to cylindrical waves in
three dimensions with independence from axial coordinate z.

A. Unattenuated wake-free waves

For constant ¢, = C,, Eq. (2.1) has the standard
D’Alembert traveling-wave general solutions

u(x,t) =f(x—Ct) +g(x + Cyt), (2.4)
where fand g are arbitrary functions. Then, setting v = C,/
L and using Eqgs. (2.3), we obtain for Eq. (2.2) with wave-
speed function

¢ (p) = vp, (2.5)
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the following general solution:
v(p,t) = $lIn(p/R) — vt] + ¢[In(p/R) + vt], (2.6)

where ¢ and ¥ are arbitrary functions, and R is retained for
dimensional reasons.

The solution involving ¢ represents a general circularly
symmetric expanding circular (or cylindrical) wave that is
unattenuated and wake-free in this inhomogeneous medium.
Circularly symmetric sharp signals emanating from a circle
surrounding the origin would result in sharp signals at any
receiver point. Of course, the result is not “reciprocal,” in
the sense that a sharp signal from (a circle surrounding) a
point that is not at the origin of this medium would not be
propagated in the form (2.6).

Equation (2.2) with (2.5) corresponds, for instance, to
waves on a membrane with an inverse-square-radial areal
density function

alp)=1/c? = (1/v*)/p°, 2.7)

where 7is the (constant) membrane tension. Solutions (2.6)
correspond to circle-front waves progressing with radial
speed ¢,(p), Eq. (2.5). A signal emitted atp = R takes time
(1/v)In(p/R) to reach radius p > R, and a sharp signal at
p = R has the same duration at any receiver point. There is
no “tail” or residual disturbance.

The solution (2.6) may also be written in the form

v(p,t) = dr(pe ") + Y (pe™). (2.6")

The waves are unattenuated in amplitude, but the outward-
traveling waves (first term) are spread out radially as ¢ in-
creases, whereas the inward-travelling waves are com-
pressed.

B. Another wake-free medium

As found by Synge!! (cf. Lewis'?) there is, in fact, one
other special form of the wave speed in one dimension for
which the general solution to (2.1) can be expressed in terms
of arbitrary functions involving progressive waves. If

¢,(x) = (dx + B)? (2.8)
(with 4 #0), then (2.1) has general solution'":'?
u(x,t) = (Ax + BY{f[1/(4Ax + B) + At]
+g[1/(4x + B) — Af]}. (2.9)

[Waves such as (2.9) with a specific factor outside the arbi-
trary functions have been termed ‘‘relatively undistort-
ed.”'°] Hence here setting @ = 4L and = B/JL, we
obtain [from Egs. (2.3)] for Eq. (2.2) with wave-speed
function

¢;(p) =plaIn(p/R) + B1?,
the general solution

v(p,t) = [@aIn(p/R) + B1{#[1/(@In(p/R) + B) + at]

+ ¢[1/(aln(p/R) +B) —at]}. (2.11)

The solution involving ¢ in (2.11) represents a relatively
undistorted general circularly symmetric expanding circular
wave of speed (2.10) that is wake-free. This heterogeneous
medium corresponds to a membrane with an areal density
function

(2.10)
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a(p) = (v/p") (@ In(p/R) + B]~*. (2.12)

The solution (2.11) becomes indefinitely large as p — 0, just
as for the Synge solution (2.9) for the heterogeneous one-
dimensional (string) case'' as x — . We find that a signal
emitted at p = R takes time

t, = (1/8)In(p/R)/[a In(p/R) + 5] (2.13)

to reach radius p > R, and the duration of a signal received at
p is equal to that of a sharp signal at p = R. Furthermore, as
p— «,in (2.13), ¢,— 1/(aB) which s finite. The wave front
propagates to infinity in a finite time.

The solutions (2.6) and (2.11) obtained above for those
special inhomogeneous media are in striking contrast to the
general solutions of (2.2) for the homogeneous two-dimen-
sional or cylindrical case ¢, = C,, constant, which assume
the “somewhat intractable” form of integrals'*

v(p,t) =f é(p cosh § — C,0)d¢
0

+ f Y(p cosh & + Cyt)dg, (2.14)
(o]

which imply the persistence of a “tail” even for a temporary

source.

lll. WAKE-FREE SPHERICAL WAVES IN AN
INHOMOGENEOUS MEDIUM

The three-dimensional scalar wave equation for spheri-
cally symmetric waves with radius-dependent wave speed
may be written as

es*(r) (rw),, = (rw) (3.1)
whose solutions may be written down immediately from

those of the one-dimensional wave equation (2.1) for inho-
mogeneous media by using the formal relations

rw(r) = u(r), (3.2a)
¢ (r) =c,(r). (3.2b)

For constant ¢; = C,, solutions (2.4) give the well-known
attenuated progressive general spherical wave solutions

w(rt) = (1/r) [F(r—GCt) + G(r+ C3t)],  (3.3)

where F and G are arbitrary functions.

One inhomogeneous three-dimensional medium may
now be found that has general spherically symmetric wake-
free spherical wave solutions. For the wave-speed function

¢;(r) = (Ar + B)? (3.4)

(with 4 #£0) analogous to (2.8), the Synge-type solutions
(2.9) in the one-dimensional case give, via Eqs. (3.2), the
general solution to (3.1):

w(r) = [4 + B/r] {F[1/(Ar + B) + At]

+ G[1/(Ar + B) — A4r]}, (3.5)
where F and G are arbitrary functions. [Such a situation
could be realized, for example, by w = p, the (excess) acous-
tic pressure in the linearized theory of sound propagation in
inhomogeneous gases with radially varying sound speed.'’]

The function F corresponds to a general spherically
symmetric outwardly progressing wake-free wave of speed
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(3.4). These waves, in general, undergo some distortion.
However, in the case where B =0, i.e., ¢;(r) « 7%, we see
that these spherical waves are unattenuated throughout their
Dpropagation.

A signal emitted at = a takes time

t;=(Ada+ B)"'(r—a)/(Ar+ B) (3.6)

to reach radius 7> a. Sharp signals at » = a are sharp at gen-
eral radius r and are of the same duration. As r— « in (3.6),
t;— [A(Aa + B)] 7!, so the spherical wave front propagates
to infinity in a finite time and, by (3.5), the amplitude re-
mains finite.

IV. HARMONIC EIGENFREQUENCY SPECTRA

It is profitable also to investigate the eigenfrequency
spectra that arise from imposing Dirichlet boundary condi-
tions on a finite region, appropriate to the coordinates for the
three inhomogeneous media discovered in the previous sec-
tions.

It is well known'® that the frequency spectrum for radial
vibrations of an annular membrane with fixed rims and in-
verse-square density [Eq. (2.7)] is exactly harmonic. This,
in fact, follows directly from the standard constant-density
string example and the transformations (2.3) with ¢, = C,,
constant.

It was shown by Borg'” that the requirement of an exact-
ly harmonic spectrum for a vibrating string with fixed ends
requires (for suitably smooth functions) either constant
wave speed (density) or squared-distance dependence of
wave speed, Eq. (2.8), i.e., inverse fourth-power density.'°
Therefore, the radial vibrations of a fixed annular membrane
with areal density function of the form (2.12) similarly pos-
sess an exactly harmonic spectrum. Explicitly, for a fixed
annulus of inner radius R and other radius R, with wave
speed (2.10), i.e., areal density function (2.12), the eigen-
functions are found to be given by

v, (p,t) = exp( — iw,t) [aIn(p/R) + B ]

In(p/R) aln(R,/R)+ B
In(R,/R) aln(p/R) + P
(4.1a)

XSin[nw

(n = 1,2,...), with corresponding angular eigenfrequencies
w, = nwB [aIn(R,/R) + B 1/n(R,/R). (4.1b)

Next, in three dimensions, it is a standard result that
solutions of (3.1) with ¢; = C,, constant, within a sphere on
the surface of which w = 0, yield an exactly harmonic eigen-
spectrum. (This corresponds to a “pressure release” surface
in the acoustical context.) It follows from the above-men-
tioned Borg result for wave speed (2.8) for the string and
from Eq. (3.1) that the radial eigenfrequency spectrum for
wave-speed function (3.4) with Dirichlet condition on the
bounding spherical surface is also exactly harmonic.

The eigenfunctions for such a sphere of radius R are
found to be given explicitly by
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w, (rt) = (4 + B/r)sin[nw(r/R;) (AR, + B)

X (Ar 4+ B) " ']exp( — iw, 1), (4.2a)
with angular eigenfrequencies
w, = n(w/R;)B(AR; + B). (4.2b)

V. CONCLUSIONS

We have found the solutions (2.6) and (2.11) that yield
wake-free progressive circular (cylindrical) waves in inho-
mogeneous two- (three-) dimensional media. In contrast to
the solutions (2.4), (2.6), and (3.3), the solutions (2.9) in
one dimension, (2.11) in two dimensions, and the new wake-
free three-dimensional solution (3.5) possess an overall
multiplicative function factor outside the arbitrary functions
that is the general radial solution to Laplace’s equation for
the correspondingly dimensioned radial symmetry.

Radial eigenfunctions and eigenfrequencies for Dirich-
let boundary conditions with radial wave speeds (2.10) in
two dimensions [annulus: Eqgs. (4.1)] and (3.4) in three
dimensions [sphere: Egs. (4.2) ] have been presented in Sec.
IV: the spectra for these radially symmetric vibrations are
harmonic. Thus the annulus with (2.10) is isospectral,’® as
far as its radial eigenfrequencies are concerned, with an an-
nulus with wave speed (2.5) (for appropriate choice of pa-
rameters), and the sphere with (3.4) is radially isospectral
with a sphere with constant wave speed.

Finally, it is intriguing to note that, as well as possessing
the wake-free traveling-wave solutions (2.9) and a harmonic
spectrum for a finite domain with Dirichlet boundary condi-
tions as mentioned above, the squared-distance speed func-
tion (2.8) in the one-dimensional wave equation (2.1) is also
singled out by possessing another property unique among
space-dependent wave speeds, as shown by Bluman and Ku-
mei'?: the invariance group of the corresponding wave equa-
tion is infinite. In view of the transformations (2.3) and
(3.2), respectively, and the findings of this paper, this
unique infiniteness would also be the case for invariance
groups for the two-dimensional radial wave equation (2.2)
with wave speed (2.10) and the three-dimensional radial
wave equation (3.1) with wave speed (3.4).
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A supermultiplet of two spin-0 and one spin-4 particle in a Coulomb potential has been shown
recently to possess a dynamical OSp(2,1) symmetry algebra. The canonical chain of maximal
subalgebras leads to a natural choice of quantum numbers and state vectors. The relevant
representations of OSp(2,1) are constructed in this adapted basis, and the wave functions
subsequently obtained by going to a coordinate realization.

I. INTRODUCTION

Over the last few years, the role of superalgebras as dy-
namical algebras in quantum mechanics has been well exem-
plified.! A case of special interest discussed by D"Hoker and
Vinet? is that of two spin-0 and one spin-} particle with elec-
tric charge — a/ein the field of dyons with electric charge e
and magnetic charges, respectively, (¢ + 1)/e and g/e. The
Hamiltonian for such a system is given by

- (o-32) ]
Hy,=—|p,—{g——Z2)|A]
D 2 p i q 2
a  (A—g)—gZ+i3* XS .
— - sy I= 1;2y3’
2r 27 r

(L.n

where 4 2 is the vector potential for a magnetic monopole of
unit strength,

(o 0) .,._(o 0)
2_(0 o'S_o o2’

and A and « are free parameters. Remarkably, as first dem-
onstrated in Ref. 2, H,, admits an OSp(2,1) & SU(2) spec-
trum supersymmetry that allows for an algebraic resolution
of the dynamics. The problem is to construct explicitly the
relevant irreducible representations of the symmetry super-
algebra. We address this question here. A natural represen-
tation basis has already been characterized in Ref. 2 by us-
ing, for quantum numbers, the eigenvalues of the Casimir
operators associated to the following canonical chain of
maximal subalgebras: OSp(2,1) # SU(2) D0(2) 2 O(2,1)
o U(1)D0(2) 90(2) @ U(1). In this paper, we complete
the construction of the corresponding representations and
obtain the action of the ladder operators in the given basis.
We also compute the wave functions by going to a coordi-
nate realization.

The paper is organized as follows. In Sec. II, we intro-
duce a particular realization of OSp(2,1) @ SU(2) in terms
of differential operators in two complex variables. Using di-
mensional reduction techniques, we show in Sec. III how it
arises as the spectrum-generating algebra for Hj,. The sym-
metry-adapted state vectors are characterized in Sec. IV and
the action of the dynamical group generators on these vec-
tors are given in Sec. IV. The wave functions are the object of
Sec. VI, and conclusions follow.

(1.2)
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I1. AN OSp(2,1) REALIZATION

Therank-2 OSp(2,1) superalgebra is eight dimensional.
If wedenoteby R, B, ,and Y the four bosonic elements of a
Cartan-like basis, the OSp(2,1) structure relation can be
written as

[RB,]=+B,, [B,B_]=—2R, (2.1a)
[RY]=[B.,Y]=0, (2.1b)
{FFRFLRy =0, {FY{ ,FX}=B_,

{FL FR}=R<+7, 2.1¢)
[RFL®] = £4FLR, [YVFL )= —4F%,

[TFR ] =4FR, (2.1d)
[B. . F5*] =0, [B,,Fi¥]=FFLR  (2.le)

The above algebra is realized as follows. Let z,, @ = 1,2, de-
note two complex variables and introduce the 4 X 4 matrices

_ 1 ( 0 1+ 03)

1]1 o \/—2_ 1 - 03 0 ’

2.2)

_ __1_( 0 o+ iaz)

K 2 \—oy—io, 0 ’

which satisfy

oM} ={nlm}} =0,

{7276 {nln} 2.3)

{7}33"?};} = 2505, a,b = 1,2.
(The symbol o, stands for the Pauli matrices.) Define

C=X+%, (2.4a)
with
- 3 o; 0O
X=z,0,~2,d, and 2= . (2.4b)
0 O
It will also prove practical to use
§i=L gt —(0 0) 2.5)
§'= 2 NaOabMy = 0 o2) (
Take
F2 = T (i/2)(3, — AZ,/|2|* FZ,)1.,
+ =+ |z|*? FZ,)m (2.68)

FL = (F%)",
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1 5 L AA=0) = Mz 02,8 ]
R=—|-083,+22="2) 1,3 — Zloals” |
AR FEE al*
(2.6b)
B, =_;_ [(a,, T2,)3, Fz,)
_AA=0) | 24%,04,3,5" ] ’ (2.60)
2| |2|*
Y=14(z,8,—2,3,) +3 —4, (2.6d)

where A is an arbitrary parameter. It is straightforward to
verify that these operators obey the relations (2.1). This re-
alization of OSp(2,1) can be further enlarged by observing
that all the above charges are invariant under the SU(2)
action generated by

Jis= — (2,00 8y — 2,04 3,) +8', i=123. (2.7)

NotealsothatC =z, 3, — Z, d, + = commutes withJ ‘and
all the OSp(2,1) generators. We have thus obtained a real-
ization of the direct sum algebra OSp(2,1)
&SU(2) a U(1).

lll. DIMENSIONAL REDUCTION AND THE COuLOMB
PROBLEM

We shall now establish the relation between the realiza-
tion of Sec. IT and the three-dimensional system whose dy-
namics is governed by the Hamiltonian H,, of Eq. (1.1).
Introduce the coordinates

0<r<w, 00«7, O0<d<2m, O<Kw<dr 3.1)
through
z, =rcos(8/2)exp[(i/2) (0 — @)],
(3.2)
z, =+rsin(8/2)exp[(i/2) (w + ¢)] .
In terms of these, the operator C takes the form
c=-id 43 (3.3)
dw
Consider now the eigenvalue equation
RY =a( —4E)~ "9, (3.4)

Since Cis central it can be diagonalized simultaneously
with R; this allows one to separate the variable . From the
condition

CV =2q¥, (3.5)
we get
V(r,0,p,0) = 4= /D2y (p.09 4. (3.6)

Note that ¢ must be an integer or a half-integer for ¥ to be
single valued. Using these wave functions in (3.4) and elimi-
nating the » dependence, one is left with the following eigen-
value problem:

RY = a( —4E)~ "2y,

with

(3.7)
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feb 2ot a)e]

a2 _ 2 Qi
n A—g)'—¢2 +13* 2ArS } (3.8)
r ?
The coordinates # in the above expression for Rare given by
Fr=2z,0.2,; (3.9)

they correspond to the standard Cartesian coordinates on
R3. Indeed, observe that, from (3.2),

rip=rcosgsin@, r,=rsingsinb,

3.10
r,=rcos 0. ( )
Multiplying (3.7) with 1/r and rescaling according to
ri—( — E)'?¢, we finally find that V¥ satisfies the Schré-
dinger equation

H,Y=EV. (3.11)

As already mentioned, this equation describes the quantum
mechanics of two spin-0 and one spin-} particles in dyon
fields.

By construction, R possesses a dynamical OSp(2,1)
& SU(2) @ U(1) algebra. The projection of (3.4), which is
achieved with the help of constraint (3.5), preserves these
symmetries as C commutes with every generator. We may
therefore conclude that the eigenfunctions ¥ of R belong to
OSp(2,1) ®SU(2) representation spaces. These functions
W also happen to be eigenfunctions of H,,, which thus admits
an OSp(2,1) & SU(2) spectrum supersymmetry.

IV. THE QUANTUM NUMBERS AND THE BASIS STATES

The eigenstates of H, can now be obtained by con-
structing bases for representations of OSp(2,1) @ SU(2).
One choice of quantum numbers for the basis states of the
irreducible representations of OSp(2,1) ® SU(2) is pro-
vided by the eigenvalues of the Casimir operators associated
to the canonical chain of maximal subalgebras:

OSp(2,1) & SU(2) D 0O(2)s O(2,1) & U(1)
G, C, J? Y Co EA

) 0(2)609) o U(1).

The Casimir operators C, of O(2,1) are well known and
given by
Co=i(HK + KH) — (4.1)

The quadratic and cubic Casimir operators of OSp(2,1)
have, respectively, the following expression®*

Cy=Co— Y>—§[FR FL | —4[FL FX ], (42a)
C=Y(C,—{[F% ,FL | —{[F, ,FR1-D
—4[F% F5 |B_—{[F" F2 1B,
—i[FR ,FX |R—i[F® F% |R. (4.2b)

In our realization, C, and C, are completely determined in
terms of j, g, and 4 so that at fixed angular momentum, the
system is described by those representations of OSp(2,1) for
which
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C=j(j+ 1D —jolio+ 1), jo=lql -1} (4.32)

C=@-ADj+1) —j(jo+ D] (4.3b)
[As usual, the eigenvalues of J are written in the form
JGi+ 1), j=je jo+ 1,.., and those of J; denoted by
m= —j, —j+ l,..,j.] In order to characterize the states
belonging to these irreducible representations, it is conven-
ient to replace C, and Y by

75=((1) _(1)), (4.4a)
and
A= —3(1 —P)sgn(2[FR F- ]
+2[F5 . FR ) +1(1 + )5, (4.4b)

which represent an equivalent pair of labeling operators. It is
not difficult to check that C; and Y can unambiguously be
reconstructed in terms of ° and 4, which both have their
eigenvalues (y and @) equal to + 1. As a matter of fact,

Co={lI2—jolo+ 1) + (g—A)]'?

— 11— AP -}, (4.50)

Y=1(14+7)4+ (g—4). (4.5b)
Finally, from the representation theory of O(2,1), we know
the eigenvalues of R to be given by

P =85, +n) n=012,., (4.6)
if those of C, are written in the form
Co=1248,3,(8;5, — 1. 4.7
Here,
By = LiG+ 1D —jo(Jo+ 1) + (g—A)*""?
—J1=—y)a+i (4.8)

In summary, we have the following eigenvalue equations to
characterize the states of our system:

I jms@yon) = j(j + D] jmsa.x.n), (4.92)
Js| jm;d,x,n) = m| jm;ad,y,n}, (4.9b)
A | ,m;@y,n) = al j,ma.y.n), (4.9¢)
V| jm;@,y,n) = x| jim;a,y.n), (4.9d)
R|jmay.n) = (A, + n)|jma,y.n). (4.9¢)

The spectrum is then easily derived from Egs. (3.4) and
(4.9¢), and one finds

Esn= —a’/4(As, +1)%

Jax.n

(4.10)

V. ACTION OF THE LADDER OPERATORS

We will now determine the action of the remaining gen-
erators on the basis vectors of Sec. IV. From the structure
relations (2.2), we find that B, act according to

B;t Ij:m;a’X’n>
= [(Aj,a,x + n)(A,-,a,X +n+ 1)
—Ajay (Bja, — D]

X | j,m;ax.n + 1). (5.1)
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The operators F % anticommute with »° and therefore re-
verse the chirality y. From their commutation relations with
R and Y, one obtains

FX | jm;a,y,n)

| 3 A @|ima. -1+ 21156,
=11 2 2 ’ '
+d1;|: (a)‘.bm’— lslrn_% :t %5/\;,_1),
(5.2a)

F® | jm;a,y,n)

='[ > (3’)’j,m;a',—1,n +-§-:|:%> 5,(,15&.—1]

&= +1

+d® (a)’j,m;l,l,n—% +Ls

: X,_,). (5.2b)

What remains is to obtain the various constants c;* (@) and
d%R(@). To this effect, note that

[FL FR 1=0(9 + &), (5.3)
with :

Y =2[F- ,FR ] —2[F% ,F4 ], (5.4a)
and

o =2[F" ,F& 1 +2[F~ F4 ], (5.4b)

and the anticommutator of ¥ and .« can be cast in the form

{9,4} = — 32RY. (5.5)
Now & can be expressed as follows:
o =4(C,— Co+ Y?). (5.6)

Since &7, R, and Y are diagonal in our basis, we may thus
write
(j’m;a’X9n| [Fli: ’FI;: ] |j1m;asXsn)
= (jm;d,x.n|[ — 42 T'RY £}/ 1| j,m;a,x.n).
(5.7)
Recalling that {F% ,,F% } =R F Y, we finally arrive at
the following expression for the norms of F ’;“l Jm;a.y.n):

(j,m;&,x,an’“; FI;; |j’m;a»¥’”>
=(S 1 @)F) 6080, +1ds @,
1 a
=[+-Z%q
[-0+v]
X[Ai,a,x +n:F(%(1+x) +q—i)]

—%(l—x)[(A,,a,ﬁn)iq—;——'{—)

4|,
(5.8a)
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(jm;@x.n|F5% FY | jym@a,y,n)
_ (Z s (@) |2) 8,1821 + |d% @6, _,

1 a
=|l—+=q
[2+4(+x)]

X[Aj,a,x +ni(£(l+x)+q —'/1)]

—(l—x) [( Bay +m L= iA],
(5.8b)

where A = [C, 4+ (JC — A)?]"/% The above relations im-
mediately give the coefficients d ;® when y is set equal to
— 1. When y = + 1, one needs, in addition to (5.8), an-
other equation in order to determine the coefficients c5*.
Such a relation is provided by

3 ER@d 4R @) = (5.9)

which is derived from (5.2) by exploiting the nilpotency of
the operators F %X, In the end one finds

@ =N_s[AFaA+3+1+n)"3 (5.10a)
b (@) =aN;[AFaA+1+}+n]"3 (5.10b)
di (@) =aN;[A+aA+i(1—a)+nl"%  (5.10c)
dR (@) =N_z[A+aA+i(1—a)+n])"%  (5.10d)

where N; = [[A +a(g—A)]/2A]"% Substitution in
(5.2) explicitly gives the action of the supersymmetry gener-
ators on the basis states | j,m;&,,y,n). We have checked that
the above coefficients could consistently be taken real.

We should point out that when the angular momentum
takes its lowest possible value, j = |g| — }, the corresponding
OSp(2,1) representation comprises only half the number of
states found in the generic situation. The only positive chira-
lity states | j,,m,@,1,n) that can be defined in this case are the
ones for which |¢ — @/2| = |g| — 1. Depending on the sign
of g, this forces @ to take a definite value. The OSp(2,1)
representation is then erected above | j,,m,a,1,0) by repeat-
ed application of the ladder operators whose action is still
given by (5.2).

VI. WAVE FUNCTIONS

Now that we have found the action of the symmetry
generators on our basis states, we can obtain the wave func-
tions algebraically by going to a coordinate realization. As
functions over R* X.§3, the various basis states will read

(r.0,¢,0| jym;1,1,n)

PimLLD (r,0.6.0)
0
0 ,
0

(6.1a)

=VYum =
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(r)0’¢9w|jvm; - l’lsn>

[ 0
7 Glim =11 (1,0,4,0)

=V _m= 0 , (6.1b)

| 0
(r909¢’w|j:m;a, - 1:”)

[ 0

_ & 0

=\l’(3, - = \‘i;(j,m,a, _ "")(r’0’¢’(9) (610)
@, im& =10 (1,0,6,0)

We consider first the case j#j,. The wave functions ¥, , ,,
are determined as follows. The @ dependence has already
been fixed. [See Eq. (3.6).] The eigenvalue equations asso-
ciated to J% and J, further allow one to separate the variables
6 and ¢ and to write ¥4™"" (1,0.6.0) in the form

POImLLD (1.0 4.0) =9V (VY o _ 11 1m (0,8),
(6.2)

where the &, _,,, ;.. (6,4) are the monopole harmonics.’
The radial equatlon satisfied by po(r) is gotten from (4.9),
ie. fromR\ll(l 1o =4 ,\I'(, 1.0y » Which, after separation of
the angular variables, reduces to

2 2
r£—+2——A—i+2A+1—r]po(r)
r

ar or
(6.3)
Its normalized solution is given by
po(r) = [RAYVATQRAF D)e~ 2], (6.4)

The wave function \.17( L1.ny is obtained by successive applica-
tion of the ladder operator B :

—~ r ~
B ¥ im = ("— ’E -8 —1- ") ¥m
=+ 1A, +m)T .- (6.5)
A little algebra yields
pa(r) = (= D[22+ 'nl/T(2A + n+ 1)]'?
Xe~ "~ 12L2A(2r). (6.6)

The wave functions that remain are found by first computing

{i)(l,— LO) = (A + '{ - Q)_1/2<",9,¢»(0|FL_ |j;m:1’110)’
(6.7a)

¥ 110 = (A=A + @)~ VXrb,4,0|F% | jm:1, — 1,0),
(6.7b)

U _\_10 = QA+ 1)"V2[N (r640|Fr |jm:1,10),

— N_{r6,4,0|F" | jm:1,1,0)], (6.7¢)
and then applying B repeatedly on each of these functions
in order to increase the value of n. Setting x = r( — E) ~ /2,

we finally obtain for the eigenstates of the Hamiltonian H,
Whenj #J 0
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jm,a, 1, —_ A1
\P‘(}ma n)(x)_apix‘! (kxi)@q—ﬁflj,m(e’¢)’

\pl(j.rn.ﬁ,— !.n)(x)
\I/z(j,m,&, — l,n)(x)

= ip ™~ 1(|x|) [

where

pEEX(|x]) = (= 1)"[nl( — 4E)2/T(2A + n)]/3|x|* ~tel -V =EWIL 201 [ T 74F x| ],

withE=E,,

.G yn

0 and spin-} particles of our multiplet.

andA=A, .

(6.8a)

v [(j+ m)/2j] G@q,j— 1/2,m— 1/2(0!¢) ““\/[(J_ m+ 1)/(2j+ 2)]aD_a@q,j+1/2,m_ 1/2(0y¢)}
VIG=mY2ID:% i v pom—12(08) +V G+ m+ 1)/ (2 + 2)]&9_a@q,1+1/2,m_ 12(6,8) '

(6.8b)

(6.8¢)

5., - Recall that the wave functions W 5, ,, and ¥ 5 _ 1, are associated, respectively, to the spin-

The casej = |g| — } is treated analogously. The expressions for the wave function are simpler and read

\[;(J'o,m,&,l.n)(x) =p1;'(,,&,l( 'x| )@q—&/z,jﬂ,m (0’¢)’

(6.9a)

\Pl(j“,m.a. —_— l,n)(x)

VIG—m+1)/(2+2)] Y vin+ 172m—12(6:8)

y ( joom&, — Ln) ] = i/’{;a'f]ﬂxp [ . i
2 (x) JIG+m+ DAY +DY 0 12m—12(0,8)

On these lowest angular states the case g = 4 is patho-
logical. In this instance, .« = 1 + 9’ and @ is related to y.
This indicates that the supersymmetry cannot be implemen-
ted® and that the bosonic and fermionic sectors span separate
O(2,1) representations.

Vil. CONCLUSION

In summary we have seen that there exists an N =2
dynamical supersymmetry for the system consisting of two
spin-0 particles and one spin-} particle in a Coulomb poten-
tial. At fixed angular momentum, the entire dynamics is de-
scribed by a single irreducible representation of OSp(2,1).
The solutions to the corresponding Schridinger and Pauli
equations have been obtained by constructing these repre-
sentations.

A special case covered by our analysis is that of the Pauli
equation for a spin-} particle in the field of a dyon, Indeed,
for A = ¢, the two lower components of H, read as follows
after a mass M has been reinstated:

=L (p_eA)2 -2 __©
=g @ — "
where B = g(x/|x|*). The spectrum of Hj, is obtained from
Eq. (4.10),

Beo, a.n
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] . (6.9b)

g},n,a
_ —aM
UGG+ D = +1+4(1+a) +n]?
and the wave functions are given by Eqs. (6.8) with x re-
placed by \2M x.

» (7.2)
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The symmetry properties of the N-particle multilevel system are studied. For indistinguishable
particles, the total wave function must be either symmetric or antisymmetric in the exchange
of any two particles. The internal states of the multilevel system are combined with suitable
spatial wave functions to produce a totally symmetric or antisymmetric wave function. The
problem of degeneracy and the method of combining a given permutational symmetry of the
internal wave function with the same or the conjugate symmetry for the spatial part are
described. It is found that Young’s diagram corresponding to the given irreducible
representation of the permutation group plays an important role.

1. INTRODUCTION

In a recent paper,’ we have defined the correlated states
and collective transition operators for an assembly of N mul-
tilevel atoms interacting with common radiation fields. We
found that the possible states are determined by various al-
lowed Young diagrams, corresponding to various represen-
tations of the permutation group S. The collective transi-
tion operators were obtained as the generators of the group
SU(n), where n is the total number of atomic levels. In this
paper, we study the symmetry properties of these “correlat-
ed states.” The total wave function of the assembly consists
of an orbital part and a spin part (spin here refers to the
internal coordinate or the excitation state of the atom). The
total wave function must also be symmetric or antisym-
metric under permutations of the atoms or molecules. For
systems such as hydrogen and ammonia masers, the atoms
are spatially separated, and there is no need for overall sym-
metrization of the wave function, while for lasers, the spatial
correlation between molecules and the lasing mode is essen-
tial. This is very much analogous to how the Pauli principle
can lead to magnetic effects even when there are no spin-
dependent terms in the Hamiltonian. The Pauli exclusion
principle requires that the total wave function ¥ change sign
under the simultaneous interchange of both space and spin
coordinates. There is thus a strict correlation between the
spatial symmetry of the orbital part (spin-independent) and
the total spin. In this paper, we propose a technique for con-
structing total wave functions of desired symmetry.

We first consider the gas or the interacting medium re-
ferred to as the molecular system to consist of a large number
N of atoms or molecules each having two possible internal
nondegenerate energy states. This system interacts with a
resonant radiation field. The transition from one internal
state of the molecular system to another is described in terms
of angular momentum operators corresponding to the spin-{
system. Omitting the radiation field, the Hamiltonian of the
molecular system can be written as?
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A A N ~ A
H=H,+EY RY =H,+ER,.

=1

(LD

Here H), represents the translational and intermolecular in-
teraction Hamiltonian, and it acts on the center of mass co-
ordinates only, E = fiw is the level separation (excitation
energy of each molecule), andR 9 (@ = 1,2,3) are the Car-
tesian components of the spin-{ operators of the jth mole-
cule. These operators satisfy the usual commutation rela-
tions

[RORP] =ibye,sRY, (1.2)
where §;; is the Kronecker § symbol and €5, is the com-
pletely antisymmetric Levi-Civita tensor. We also define the
operators

N ~
=Y RP, a=123,
i=1

R (1.3)
and
R?=R? +R2 +R?. (1.4)

A typical energy state of the N-molecule system is writ-
ten as

'tb;::} = U;N)(!'um,ly)iéfnm (L5)

Here U {™ is the wave function describing the center of mass
coordinates r,,...,I'y, and is an eigenstate of H,,

HUM=EUM. (1.6)
The state
=4+ - =) (L7

is the internal energy state or what we shall call the spin state
of the system and is an eigenstate of R § (for allj), with an
eigenvalue § or — } depending on whether thereisa + or

— sign at the jth place. There are obviously 2" such states. If
n., and n_ denote the number of + and — signs in ¢\,
then m is defined as
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m=n,—n_ (1.8)
Further,
N=n,+n_ (1.9)

is the total number of molecules. The total energy of the
system is given by

HY = E, 0, (1.10)
where
E,, =E, +imE. (1.11)

The ¥} is, in general, degenerate. Both U (™ and 4., con-
tribute to the degeneracy. One may readily verify that the
degeneracy of the state ¢ is given by

NN+ m)/2Q(N—m)/2)\. (1.12)

If we take a suitable superposition of the states ¢, such that
this superposition is an eigenstate of R ?,

R2pW = r(r+ g, (1.13)

then in analogy with the angular momentum states one finds
that r is an integer with

|m|<r<N . (1.14)

The degeneracy of ¢ is reduced, but not completely re-
moved. The state 5’ has the degeneracy [cf. Eq. (2) of Ref.
2 and also Eq. (3.3) below]

NIQr+ D/((N+2r+2)/20(N —=2r)/72).  (1.15)

The state ¢4 (corresponding to r having its maximum pos-
sible value N /2) is nondegenerate. Further, this stateis com-
pletely symmetric under the permutation of internal spins.
However, the state ¢%’, for r#N /2, in general, does not
have any definite symmetry under the permutation of the
internal spins.

If the molecules are indistinguishable, the total wave
function ¥ must be symmetric for Bose molecules and
antisymmetric for Fermi molecules. These limitatations on
account of symmetry have been completely ignored
throughout the study of two-level molecules by Dicke as well
as others.

The question naturally arises whether it is possible to
choose a combination of the wave functions

U(N)¢(N)
Fuen

such that the resultant state has the desired symmetry.>-
Here ( is some parameter specifying the manner in which
the states U,y or ¢,,,q transform under permutations. We
wish to explore this aspect of the problem in the present
investigation.

Another generalization being considered recently is in
treating the interaction problems. This is in regard to assum-
ing that each molecule has three or, in general, n energy
states. Transitions from one state to another are described in
terms of the operators that are the generators of SU(n).
Again, one would be interested in constructing wave func-
tions that have a definite symmetry under permutations. We
shall see that the Young diagrams corresponding to the giv-
en irreducible representation of the permutation group play
an important role in the construction of such states.
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In Sec. II, we obtain explicit expression for the three-
particle states of the two-level system with given symmetry
and quantum numbers 7,m. The twofold degeneracy of the
state r = 1, m =}, gets removed. In Sec. III we generalize
this to N-particle states of the two-level system. This is then
further generalized to the n-level system in Sec. IV. In Sec. V
we consider specific examples of two-particle and three-par-
ticle systems.

. THREE-PARTICLE STATES WITH GIVEN SYMMETRY

In this section we consider a three-particle system of
two-level “molecules” and give an explicit construction of
states that are either symmetric or antisymmetric in the per-
mutation of these particles. The example will serve as an
illustration for more complex systems to be considered in
Iater sections. The total wave function is written in the form

¢=z U&’(l‘n!’zyl‘g)?’% ’ (21)
1)

where U is the wave function describing the center of mass
coordinates of individual particles and ¢ describes the
“spin” state of the system.

A. Spin-3 states
It is readily seen that the spin wave function

|+ 4+ +) 2.2)

corresponds to 7 = 3, m = }, and is nondegenerate. It is sym-
metric in the permutation of the three particles.
Similarly the wave functions

AN+ + =)+ |+ — +)+]|— + +)} (23)
OB ——+)+|—+ =)+]+ - =)} (4
and

| — — =) (2.5)

correspond to r =3 and m =}, — 4, and — 3, respectively.
They are all nondegenerate and symmetric in the permuta-
tion of the three particles.

Hence if the three particles are bosons, the total wave
function is required to be symmetric. This is achieved by
taking U to be symmetric, i.e.,

1
Ugs =f;“ U,,L, ([1)U,,,(f2)U,4,(l'3) ’ (2.6)

where the summation includes all six permutations
( Hpfianis) of (1,2,3). Written explicitly we have
Uy, = (1N6){U,(2,) Uy (1,) Us(13)

+ Ui(r) Us(r;) Uy(rs)

+ U, (r) Us(r) Ui (13) + Uy(ry) Uy (1) Us(13)

+ Us(r)) Up(r) Ui (1) + Us(r) Uy (1) Up(r3) }

Q2.7
Thus the total wave function
st¢3/2,m (28)
is automatically symmetric.
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Similarly if the three particles are fermions, the total
wave function is to be antisymmetric, and this is achieved by
taking U, itself as antisymmetric, viz.,

1
I/g‘z =f;“5n‘u"l (!l)Uﬂz(rz)Uﬂo (!3)

Ul(l'l) Ul(l'z) Ul(l's)
=—|Uyr) Uxr) Uyr) (29)
V6 |Uy(r) Us(r)  Us(ry)

Here p, i + 1depending on whether the permutation P, is
even or odd. The wave function

Uga ¢3/ 2,m

is then antisymmetric.

It may be mentioned that the state U,, [Eq. (2.6)] gen-
erates a one-dimensional irreducible representation of the
symmetric group S; where each element of S, is represented
by the number 1. This representation of S; is customarily
denoted by the Young diagram

a1l -

On the other hand the state U,, [Eq. (2.9)] generates the
other one-dimensional representation of S, where even per-
mutations are represented by + 1, and odd permutations by

— 1. Such arepresentation is denoted by the Young diagram

B . (2.12)

Each of the spin wave functions (2.2), (2.3), (2.4), or (2.5),
ie,@,,,withr=3,m=31, —1,or — 3, also generates the
one-dimensional irreducible representation (2.11) of S,.
Obviously no spin wave function generates the irreducible
representation (2.12). In fact, only those irreducible repre-
sentations that have at most two rows can be generated by
spin-} wave functions (cf. Wigner®). Each of the wave func-
tions (2.8) generates the irreducible representation (2.11)
of S,;, whereas each of the wave functions (2.10) generates
the irreducible representation (2.12). This, in fact, is a con-
sequence of the relations

(2.10)

(2.11)

o1 ® [N = o (2.13)
and

I - g = E (2.14)
B. Spin-} states

We now consider states with 7 = }, m = 4. This state is
twofold degenerate. We may choose these states explicitly as
follows:

la,) = 121120,

= (1//6)
XQU++ =) ==+ +) =+ - +)},
(2.15a)
|az)=¢|/z,1/z,a, =(1/\/§){|+ —+H)=|—++).
(2.15b)

These states are neither symmetric nor antisymmetric under
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the permutation of the three particles. Since all permutations
can be obtained by repeated application of P,, and P,; (inter-
changes of particles 1 and 2 and of particles 1 and 3, respec-
tively), we will restrict to symmetry under these operations
only. We verify that the states |a;) transform according to
the following:

?12|a1> = +|a,),

ﬁlzlaz) = —|a,),

?13|‘11) = —|a;) —3|ay)},
ﬁl:;'az) =4{—3la)) +]a)}.

(2.16)

If we can construct a set of orbital wave functions also
satisfying analogous transformations, viz.,

?ildl =X1»
Data= s (2.17)
Py, =§( —Xl—\ﬁ,l’z) ;
ﬁlal’z =4 —=Br+x),
then it may readily be verified that the state
¥, = xi1la)) + xala,) (2.13)

is symmetric under the operators ?’12 and ?’,3 and hence un-
der all permutations of the three particles. On the other
hand, if we can construct states y; and y, such that they
satisfy transformations analogous to Eq. (2.17) except for a
minus sign,

;l?ai’l = _I/l s
’:’121-’2= + X2 (2.19)
Payi= — (-1 —3x2)
Pay.= — 4= +12)
then the state
Yo =X1la1) + xalas) (2.20)

is antisymmetric under any transposition and hence under
all odd permutations.

There are in fact two sets (y,,Y2;) and (yy,¥22) satis-
fying Eq. (2.17), viz.,,

11 = WI2){2U,(x,) Uy (%,) Uy (x5)
+2U,(x) Ui (x,) Us(x5)
— Us(x,) Uy (%) Uy (x3) — Uy (%) Us(x,) Up(x3)
— Us(x) Uy(x,) Up(x3) — Uy (x,) Us(x,) Uy (x3) },
(2.21a)
X2 = i{Ul(xl)U:,(xz)Uz(x:,) — Us(x,) Uy (x,) Uy (x3)
+ U (%) Us(x,) Uy (x3) — Us(x,) Uy (x,) Up(x3) },
(2.21b)
Y12 = HU (x)) Us(x2) U(x3) + Us(x,) U, (%) Up(x)
— Us(x)) Uy (x3) Uy (x3) — Uy (x,) Us(x,) Up(x3) },
(2.22a)
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X2z = (A/V12){2U,(x,) Uy (x,) Uy (x3)
— 2U,(x,) Uy (x,) Us(x3)
+ U3 (x)) Uz(x,) Uy (x3) — Uy (%)) Us(x,) Uy (x3)

+ Ui (x)) Us(x,) Uy (x3) — U3(xl)U,(x2)U2(x3)} .
(2.22b)

Similarly there are two sets (¥11,¥21) and (y12,Y2,) satisfy-
ing Eq. (2.19). In fact, we find that we may choose

X=X 12, (2.23)
X2 = —Xu

Thus there are in fact two wave functions
Ui, =xnla1) + xa1las), (2.24)
Yy = X12l01) + X22la2)

with even symmetry and
Yia =/§ll|al> +,%21|a2> = xala) “Xu'az) ’ (2.25)

Yra = X12|@1) + X221@2) = X22]@)) — X12]@2)
with odd symmetry. However, it may be noted that no per-
mutation can transform one set of functions from (y,1,Y2:)
into the other set (y2,Y22). They belong to different orthog-
onal spaces. Thus no intéraction will connect ¥, to ¢,, or
¥4 to ¥,,. One may interpret it to say that the degeneracy of
the state (7,m) is completely removed.

Analogous considerations follow for the states with
r=3m= —14

In terms of the irreducible representations of S;, one
finds that the wave functions (2.15) generate the two-di-
mensional irreducible representation

B:] (2.26)

of S;. The dimensionality of this representation is in fact
equal to the degeneracy of the state » = }, m = }. The orbital
wave functions (2.21) or (2.23) also generate the same irre-
ducible representation (2.26). The orbital wave functions
X1:X2 generate an irreducible representation conjugate to Eq.
(2.26), which in this particular case happens to be Eq.
(2.26) itself. The result that we could construct states (2.18)
and (2.20), which generate the irreducible representations
(2.11) and (2.12), isa consequence of the fact that the direct
product of Eq. (2.26) with itself contains the representa-
tions (2.11) and (2.12), i.e,

F@F:DZD@E@EP. (2.27)

Ill. N-PARTICLE STATE WITH GIVEN SYMMETRY

In this section we wish to consider the N-particle sys-
tem, where each particle has two levels, and hence behaves
like a spin-} system. As stated earlier, the general energy
eigenstate is a direct product of orbital function and spin-
wave function:

'ﬁgz} = Uém(l'pl'z,--~,l'zv)¢£,?’n) . 3.1

We wish to construct states with given (»,m) and with a

given symmetry.
It is well known® that the spin wave functions generate
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an irreducible representation of S that corresponds to a
Young diagram with at most two rows:

L. : (3.2)

The total number of squares in the diagram is N and the
difference of the number of squares in the two rows is exactly
r. The dimensionality of the irreducible representation (3.2)
[cf. Ref. 7 and also Eq. (4.9) below] is given by

d=N!2r+ 1)/((N+2r+2)/2(N—-r)/2), 3.3)
which is exactly the degeneracy of the state with a given
(r,m), i.e., there are d states,

la) = ¢, i=12,..d, (3.4)

with a given (7,m). These states may be chosen to be orthog-
onal. However, these are neither symmetric nor antisym-
metric under arbitrary permutations of the N particles but
transform linearly among themselves:

~ d
P,la) = z F?f”'“j) .

J=1

(3.5)

Since all permutations can be obtained by repeated applica-
tions of the transposition P, (a =2,3,...,N), we have re-
stricted the consideration under such transpositions only.
We now assert that it is possible to construct a set of orbital
wave functions y; and also y,, i = 1,2,...,d, such that they
obey transformations

Py, =Ty, (3.6)

Pyi= -y, . (3.7)
Since a similar result holds for the more general case of n-
level systems, we shall give the proof of this assertion in Sec.
IV.

The functions y; generate the irreducible representation
identical to Eq. (3.2), whereas the function y, generates the
irreducible representation conjugate to Eq. (3.2), viz., the

one given by the Young diagram by interchanging rows and
columns of the diagram (3.2):

(3.8)
]
The wave function
d
Yo=Y xila) (3.9)
i=1
is then symmetric under all permutations, for
ﬁa s = r‘(iﬂ)rl(a) ila
1 'ﬁ g;: Ji k X]I k)
=V, (3.10)

where we have used the fact that ﬁ,aﬁ,a is an identity oper-
ation so that

d
) =
3 I =5,

i=1

Similarly the wave function

(3.11)
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¥, =Y xila) (3.12)
is antisymmetric under all odd permutations.

Even though there is only one set of spin wave functions
satisfying Eq. (3.5), there are in fact d sets of orbital wave
functions (each set containing d wave functions), which
obey Eq. (3.6) or Eq. (3.7), i.e,

A d
Poxu= Y Tixy» (3.13)
ji=1
A - d -
PoYu=— Y L% - (3.14)
j=1
Thus there are in fact d wave functions
d
2 inlai>! k= 1’2’--"‘1, (315)

i=1
which are symmetric under all permutations, and another d
wave functions

d

S xula), k=12,..4,

i=1
which are antisymmetric under all odd permutations. How-
ever, no permutation can transform one set of wave func-
tions y,; (i=1,2,....d) (or y,) into any other set y, ., (or
,{’k-; ). Therefore no interaction will connect one symmetric
(or antisymmetric) wave function to any other symmetric
or antisymmetric wave function, and hence the apparent de-
generacy of the state with a given (r,m) is completely re-
moved.

(3.16)

IV. N-PARTICLE STATES OF THE n-LEVEL SYSTEM

In this section we consider the N-particle system, where
each particle has # levels. We denote these n levels of the jth
particle by the state

), a=12,..n. (4.1)

Transitions from state |4 () to |4 §) are described in terms
of operators of the type

R =p1Pay. (4.2)
We also have the completeness relation
> AL =1. (4.3)

a=1
We thus have n> — 1 such independent operators, which we
may associate with the generators® of SU(#). In analogy
with the Dicke operators of a two-level system, we may also
define the generators of SU(n) for the total system,

A N A
Rs=> R 9. 4.4)
j=1
A typical N-particle spin state could be expressed as
M _ (g @ ) )
PO = ADAD, AL, AD), (4.5)

where the jth particle is in the a;th state. There are obviously
n” such states and they generate an n”-dimensional repre-
sentation of the permutation group Sy. This representation
is reducible. First, states with N, particles occupying the first
level, N, particles occupying the second level, etc., will trans-
form among themselves and hence they will generate a repre-
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sentation of S. The dimensionality of this representation is
NYN|IN,--N,! (4.6)

and the number of such different representations is equal to
the number of possibilities of N,,N,,...,N, such that N,
+ N, + :+- + N, = N. Each of these representations of S
is further reducible, since functions corresponding to given
eigenvalues of the Casimir operators of SU(n) will trans-
form among themeselves.

Another way of obtaining the reduction of the n" di-
mensional representation of S, with basis functions (4.5) is
in terms of Young’s diagrams. Only those diagrams with at
most n rows are included in this representation. These repre-
sentations are of the type

111
]

re = ) 4.7

where there are k rows and the first row contains n, squares,
the second row contains n, squares, etc., with the restriction
n1+n2+ o +nk =N,
n>n,3 o »n.»0, k<n. (4.8)

The dimensionality of this representation of S is given
by’

N1
d,=d;, = (=1, (4.9)
I LN LY ik 1
where
L=n+k—i (i=12,.k). (4.10)

These representations correspond to definite values of the
Casimir operators of SU(7). One may also give an expres-
sion for the number of times the representation (4.7) occurs
in the n™-dimensional representation. This number is given
by

k& (n+n— i)
A= ———= 1L—1).
(] il;Il Ii!(n—i)! ( ! j)

I<icj<k

(4.11)

This in fact is the dimensionality of the irreducible represen-
tation of SU(#n) corresponding to Young’s diagram (4.7).
Notice that Eq. (4.11) implies

/l[,,k] =0, if k>n, (4.12)
in conformity with the requirement that the Young dia-
grams with the number of rows greater than the number of
levels are not allowed. One may also verify that

— N
D AimAimg=n"s
(7]

where summation is over all partitions [n, ] of N satisfying
Eq. (4.8).

We now wish to take the direct product of the set of spin
wave functions that generate the irreducible representation
(4.7) with a suitable set of orbital wave functions such that
the combined wave function has a definite symmetry. How-

(4.13)
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ever, before this we obtain an expression for the projection
operator, which when acting on ¢ takes out the part that
corresponds to the irreducible representation (4.7) of Sy.

Let K ) be a linear combination of permutation opera-
tors deﬁned by

1’%;,#>=%ZP‘, ry Py x P, (4.14)
where I'*) (P) are the matrices of the uth irreducible repre-
sentation of Sy and the sum over Pincludes all permutations
Pof S- The subscripts (i) on T'*’ denote the (i, j)th matrix
element (1</, j<d, where d is the dimensionality of the uth
representation). We may readily verify the following prop-
erties of K .

I?,S;“K W =6,6.K", (4.15)

which follows from the basic orthogonality relations of the
irreducible representations, viz.,

N
(p) PF(V) P—l =
STParPE=h =2

7]
From Eq. (4.15) we also obtain a number of other relations,
such as

8, 8ub . (4.16)

KPR =6,6,K¢, (4.17)

R :5"’K @ =8,,8, K, (4.18)

RyRY =6,.6,KR, (4.19)

RpRY =66k, (4.20)
and

KPR =68,k (421)

(No summation over repeated indices.)

The last relation (4.21) is of particular interest, since it
shows that X ) is a projection operator. Further on, setting
i=jin Eq. (4.14), summing over i and then over u, and
using the completeness property of the character of irreduc-
ible representations, we also obtain the completeness rela-
tion

z z K""—-l 4.22)
u o i=1
We also find from definition (4.14) that
PRy =2 Z 'y (R)PR
(pe) -1 K
N' ZI‘L‘ (P )ZI" (PR)X(PR)
-3 L@@ -HEE. (4.23)

Thus the operator k ) can be used to obtain the wave func-
tions that would generate a given irreducible representation.
We operate K {4 on the state ¢, Eq. (4.5), and obtain

W= K}j’"¢“"’ . (4.24)
Because of Eq. (4.23) we find that any permutation of the N
particles on this state gives a linear superposition of the state
& (with j fixed):
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(;4) ; F(f)(P_l)¢(”) (4_25)
Hence ¢{”, #{/*,..., with a fixed j, generate the uth irreduc-
ible representation of S,. One may readily verify that these
functions are in fact orthogonal:

(6 |98°) = 6,6, ($V,8") . (4.26)

One point needs clarification at this stage, regarding the
number of linearly independent sets of wave functions
($1j5P3)»--+04, ;) that can generate a given irreducible repre-
sentation. Obviously the maximum number of such setsis d. "
corresponding to each different value of j, and this will hap-
pen if, and only if, each in Eq. (4.5) is different (which
incidentally requires that the number of levels available is at
least N). On the other hand, it may also happen that no set of
¢’s exists which can generate a given irreducible representa-
tion. This in fact will happen if the irreducible representation
under consideration corresponds to a Young diagram hav-
ing a number of rows greater than # (all ¢’ are zero in this
case). The number of linearly mdependent sets of
(#,j+#-..) generating a given irreducible representation is
exactly the same as the number of times the given representa-
tion occurs in the (NI/NIN,!- - N,!)-dimensional space of
wave functions with N, particles occupying the first level, N,
particles occupying the second level, etc. [This number is
different from the expression (4.11), which represents the
number of times a given irreducible representation occurs in
the n-dimensional space of wave functions of type (4.5)
without any restriction on how many are occupying level 1,
how many are occupying level 2, etc.]

We have discussed how we can generate a given irreduc-
ible representation of .S, using spin wave functions. Analo-
gous considerations hold for the orbital wave functions.
Here there is no restriction on the number of energy levels. A
typical wave function is given by '

U™ = U,(x,)Uy(x,) Uy (xy) - (4.27)

There are N'! such wave functions that can be obtained by
various permutations of the N particles. This set of wave
functions generates a N !-dimensional representation of S,
which is obviously reducible. It follows fom the earlier con-
siderations that the functions

U‘(jﬂ) =1?'§j#)U(N) , (4.28)
with a fixed j, will generate the uth irreducible representa-
tion of S,.

Consider now the wave function

Vs=> Uds . (4.29)

i

One may readily verify that this state is symmetric under all
permutations, for using Eq. (4.25),

Py =3 {PUPHPHR?
=S TP @ ITPE-HUPS,
Lkl
- ; U ¢m = (4.30)
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We obtain different symmetric functions by taking different
values of jand m. However, as remarked earlier, no permuta-
tion can connect one set to the other, and as such we may
regard it as a nondegenerate state.

We also define a set of operators

0 _ )
K} I ; 8T PyxP,
where 6, is + 1 or — 1 according as Pis an even or an odd
permutation. Notice that

kp=kp,
where [z is the conjugate representation, i.e., the one which is
obtained by interchanging rows and columns of the corre-
sponding Young’s diagram.) The wave functions

Ty = f{gjmmm , (4.32)

with a fixed j, will generate the zth irreducible representa-
tion of Sy. The desired antisymmetric wave function is then
given by

(4.31)

v, = z U“‘" w (4.33)

We have thus been able to obtain the N-particle symmet-
ric or antisymmetric wave function for the n-level system
corresponding to given values of the spin parameters. In Sec.
V we consider special cases of Egs. (4.29) and (4.33).

V. SPECIAL CASES

We now consider some special cases of Egs. (4.29) and
(4.33) as applied to two- and three-particle systems.

A. Two-particle system

In this case only two irreducible representations are ap-
plicable. These correspond to Young diagrams (T]and B

The K operators are given by
R =ile+ D)1, (5.1)
K =4le~(12)]. (5.2)

Notice that KV = K @, Thus two totally symmetric and two
totally antisymmetric functions are available:

Ve = {2“){'1»'{92“)”1({1)Uz(!'z)] (5.3)
or
= [RD4, )R DU, (2) Up(r) ] 5 (5.4)
and
¥, = (RO, A0K 20, (1) Uy(r)] (5.5)
or
= {K(z)Mp/{z)KmUl(fx)Uz(’.’z)} . (5.6)

IfA, = A,, then R |A1,4,) = 0, and we have only one func-
tion of each type.
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B. Three-particle system

In this case we have three irreducible representations
corresponding to the diagrams:

o4, EFI , and a .
The K operators are given by

RO =jle+ (12) + (13) + (23) + (123) + (132)],
(5.8)

@ = 4e+ (12) — §(13) — §(23) — }(123) — §(132)],
(5.9)

K@ =(1/2{3)[ — (13) + (23) — (123) + (132)],
(5.10)

= (1/2{3)[ — (13) + (23) + (123) — (132)],
(5.11)

KQ =ile— (12) +3(13) +4(23) — }(123) — }(132)],
(5.12)

RO =}le— (12) — (13) — (23) + (123) + (132)] .
(5.13)

Here KW = K®and K@ = K@ (actually K @ = R,
etc.). If we are considering a two-level system, then we will
have spin wave functions of the type | + + — ), etc. In this
case K© operating on such wave functions will give zero.
Operation of K M will give functions of the type (2.2)-(2.5).
The terms K @ apd K P operating on, say, | + + — ),
vzﬂl give functxonsA (2.15a) and (2.15b), whereas
K|+ + —) and K$|+ + —) are both zero. One
may readily verify that

Xu= k P Ux) Uy (%) Us(x3)

X = I?g)Ux(xn) U, (%) Us(x;) ,
etc.

The results of Sec. II are thus reproduced. Similar re-
sults may readily be obtained for the three-level systems. As
the number of particles are increased, the explicit construc-
tion of wave functions with a given symmetry becomes more
and more difficult. However, their existence is demonstrated

and one may obtain some general properties of such states
using the known results of the symmetry group.

ACKNOWLEDGMENT

This work was supported in part by a grant from the
Alabama Research Institute.

(5.7)

><:)

'J. Rai, C. L. Mehta, and N. Mukunda, J. Math. Phys. 29, 510 (1988).

R. H. Dicke, Phys. Rev. 93, 99 (1954).

3M. Gross and S, Haroche, Phys. Rep. 93, 301 (1982), and references cited
therein.

*J. Rai, C. L. Mehta, and N. Mukanda, Proceedings of the Fifth Rochester
Conference, edited by L. Mandel and E. Wolf (Plenum, New York, 1984),
p-97.

51. G. Kaplan, Symmetry of Many Electron Systems ( Academic, New York,
1975).

SE. P. Wigner, Group Theory and Its Application to the Quantum Mechanics
of Atomic Spectra (Academic, New York, 1959).

"H. Boerner, Group Representation (Springer, Berlin, 1955).

8J. Rai and C. L. Mehta, Opt. Commun. 42, 113 (1982); F. T. Hioe and J. H.
Eberly, Phys. Rev. Lett. 47, 838 (1981).

Rai, Mehta, and Mukunda 2449



The unitarity relations for the four-body scattering amplitude

Yoshiko Matsui

Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-machi, Koganei-

shi, Tokyo, Japan

{Received 10 September 1987; accepted for publication 13 June 1988)

A formal derivation of the general unitarity relation for the four-particle transition operator is
given by generalizing the three-body formalism of Karlson and Zeiger to the four-body case.
From this operator relation the on-shell unitarity relations for the amplitudes that describe
elastic/rearrangement, partial breakup, and full breakup scattering processes are obtained.

I. INTRODUCTION

Faddeev'® established the three-body scattering theory
in which he gave the unitarity relation for the resolvent of the
total Hamiltonian. Since his work, various approaches to
derive the unitarity condition for the three-particle transi-
tion amplitudes have been proposed by many authors®~® in
the formal sense and by a mathematical author® rigorously.

The scattering equations for the N-body problem have
been presented by Yakubovskii,” who generalized the Fad-
deev treatment to the N-body case. Alt, Grassberger, and
Sandhas® (AGS) succeeded in finding appropriate scatter-
ing equations. In this AGS approach, N-particle equations
are written in an N-body matrix version of the corresponding
two-body relations. Based on these two formalisms, Karlson
and Zeiger’ (KZ) constructed four-particle equations ex-
pressed in terms of singularity-free physical transition am-
plitudes that were obtained by a thorough singularity analy-
sis of the Faddeev kernel. However, the study of the unitarity
relations for those four-body scattering amplitudes has not
received much attention.

When we embark on the numerical analysis of the scat-
tering equations, the theory demands that we obtain the
physical amplitudes which satisfy their unitarity conditions;
this is the exact approach to the scattering problem. In fact,
the unitarity relations play an important role in checking the
calculating system, especially whether or not the normaliza-
tion of the scattering equation is successful.®

Here I would like to derive the unitarity relation for the
four-particle scattering amplitudes introduced by KZ, using
Yakubovskii’s equations. The present work will only give
the procedure of the formal operational calculus without the
rigorous argument of the problem, such as the proof that the
boundary values of the scattering amplitudes exist at the
right hand cut. Although the present paper has heuristic
value only, it may give further stimulus to the perfect theory.

In Sec. II, the general unitarity relation in operator form
is derived, using the discontinuities of the transition opera-
tors for the subsystems given in the Appendix. From this
operator relation I obtain in Sec. III on-shell unitarity rela-
tions for the amplitudes that describe elastic/rearrange-
ment, partial breakup, and full breakup processes.

§Il. THE GENERAL UNITARITY RELATION INOPERATOR
FORM

In this section I derive the general unitarity relation in
operator form for the four-particle KZ operator starting at
the Faddeev-Yakubovskii (FY) equation.

2450 J. Math. Phys. 29 (11), November 1988

0022-2488/88/112450-12$02.50

Throughout, the same notation for operators and kine-
matic variables as one finds in KZ will be used. Four-particle
indices (lowercase letters: a,b,...) will refer to different types
of the seven possible partitions of four particles into two
groups: (123)(4), (421)(3), (341)(2), (432)(1),
(12)(34), (13)(24), (14)(23). These partitions denote
(3 + 1) or (2 + 2) subsystems in the four-body system. The
indices a, 5, and y run over all possible values: 12, 13, 23, 14,
24, 34. These pair indices will usually appear as subordinate
indices, in the sense that they label interacting pairs within a
certain channel of some type a. In such a case we writea Ca.

Let us denote four-particle operators by capital letters.
From Faddeev’s definition, the transition amplitude Mg,
(B,aCa) for a (3 + 1) subsystem can be denoted by

M;a = 63(2 VB —_ VﬁGaVa,
with pairwise interactions ¥, and ¥, and resolvent G*(z)

=(H,—z)"' of the total Hamiltonian H,
= H,+ 2,c, V,. This amplitude obeys the equation

Mg, =85,Ty — TG, ¥ 84, M5, (1)
yCa

where 84, = 1 — 8p,, G, is the resolvent of H,, and T is the

T matrix defined as Tz = ¥V — V3 Gg ¥V, with the resolvent

Gg(z) = (Hg —2)~'. The three-body connected part of
o is defined as

and satisfies a system resembling (1),

Wae = TgGoT, b5, — TgG, z Wia (2)
v#8
The formulation described above holds also for the (2 + 2)
subsystem.
Generalizing the three-body formalism, Yakubovskii
constructed a symmetric four-particle operator M 5, (BCb,
aCa),

ML = TyG,T,5,,6"

+ 3 S TG, T7%85,GoT s 3)

yCbéCa

where T’ =V, 8,5 + V,,GV5s and G is the resolvent of the
four-body total Hamiltonian.

As in the three-body case, we note that Wp,
= M2 — 6% W, is the four-body connected part of M g2,
and obeys the following equation:
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wh = ; 8%8,sM 5, GoW &,
76Ch

+ ;CbS"‘SﬁMg,Gowgz. (4)
kd
eDs

In order to obtain a more appropriate operator to define
the physical amplitude, we proceed with the formalism of
KZ.

Consider the Lovelace and AGS operators Ug,*’ and
U %, respectively, which are defined as follows:

V=3 V= 3 3 VGV,
r#B v#B 6#a

UL = Vs — V,Gs,
pa Sga s ;ﬂ;a Y ®
Ue = — 84, (H, —2) + UE"’
= —8p (Hg —2) + U™ .
Their equations are

UgH' =3 ¥V, — 3 UG T,

r#8 S#a
U’ =3 Vs— 3 T,GUs ™,
S#a y#8
(5
Ub, = —8p,Go'— ¥ T,GUS,,
r#8
Ufa = —80.Gg ' — 3 Uj,GoT,.
r#a

The AGS operator U g, is related to W3, by the equation

Wee = TpGoU g, GoT,.

The four-particle AGS operator corresponding to Ug,
is expressed by U % and has the following relation with the
FY operator W 52:

W= >y W5,GU%GoW s,

yCb éCa

Finally, defining our operator H f;‘;, by

HY =T, U%T,, with T, =G,T;G,
we arrive at the system of equations for H 3,

Hy =Tp65,8%+ ¥ 8% Y T,Up HS:. (6)

[=Y:] yCe
I would like to start with this system of equations to derive

the unitarity relation in operator form.
Within this paragraph, it is convenient to make the no-

TABLE 1. The order in which to arrange the 12 indices (a,a) of the ele-
ments of matrix 4, with the number of rows or columns

No. 1 2 3 4 5 6 7 8 9 10 11 12

a 4 4 4 3 3 3 2 2 2 1 1 1
14 42 13 14 34 23 24 34

TABLE II. The order in which to arrange the six indices (k,x) of the ele-
ments of matrix B, with number of rows.

No 1 2 3 4 5 6
b 12 13 23 14 24 34
B 12 13 23 14 24 34

TABLE III. The elements of matrix T.

No. 1 2 3 4 5 6 7 8 9 10 11 12
1 T B

2 T _

3 T,

4 T,

5 1.

6 T,

7 7‘13 .

8 TM

9 T,
10 Ty

11 Toe

12 T

TABLE IV. The elements of matrix 7.

No. 1 2 3 4 5 6 7 8 9 10 11 12

N h W N
oy
'y
e
=

TABLE V. The elements of matrix T".

2451 J. Math. Phys., Vol. 29, No. 11, November 1988

No. 1 2 3 4 5 6
1 T,
2 T,
3 Ty
4 T,
5 T,
6 7‘42
7 713
8 .Tl 4
9 ‘T34
10 Ts
il T,
12 Tue
Yoshiko Matsui 2451



TABLE VI. The elements of matrix U.

No. 1 2 3 4 5 7 8 9 10 1 12
1 U:Z.IZ U?I.l} U:Z,IJ
2 U?J.IZ U:J,IJ U:J.ZJ
3 U;J.]Z U;J.IJ U;LZ}
4 Uil‘lz U?I,l‘ U?Z.Z‘
5 U i‘. 12 U il. 14 U 34.24
6 U ;4. 12 U ;4, 14 U ;O.24
7 U%J,l] U%J.ll %3.34
8 T U%‘JJ U?‘,ll U%‘.M
9 Ug‘.ll UIZMAI U§4,34
10 U;J.ZJ U;3.42 U;J,M
l 1 U12.23 U:Z,ll U:Z.fM
12 U;‘.ZJ U;4.42 U;‘JM
TABLE VII. The clements of matrix U". tations more specific, denoting by e and 4 the different
(3 + 1) subsystems, i.e., the partition of the type (***) ('),
No. ! 2 3 4 5 6 and by % and / the different (2 4 2) subsystems, i.e., the
1 v, U, partition (--)(-+). Then Eq. (6) can be separated into four
2 U, U, groups, relating to the four types of amplitudes: H ,, H X2,
3 Uz Ul Hp ,and H ¥, respectively. Following Narodetsukii’s'® no-
4 " Ul Ui » tation, we express these four groups by matrices 4, B, C, and
5 . U Vsas D, where A= (H'.), B= (H*), etc. For simplicity, let
6 Ui Uzt

TABLE VIII. The elements of matrix Q. All elements need to be multiplied
by a factor of J.

No. 1 2 3 4 S5 6 7 8 9 10 11 12

1-T5 T5!

2 ~-T5 75

3 -7 Tt

4 T3 ~-T3'

5 To! T

6 T Tt

7 s -7

8 T -Ta

9 —-Tal T
10 75 T

1 72_4' —7'{4' -
12 T T3

TABLE IX. The elements of matrix £2'. All elements need to be multiplied
by a factor of §.

1 T3 T

2 T5! T

3 T3 T

4 7'1—“ 'Tl—‘l

5 7’2—“ ‘7'-2—‘1

6 "T}—‘l 7‘3—4I
2452 J. Math. Phys., Vol. 29, No. 11, November 1988

the superscripts e and & denote the value () of the type
(-++)(*),andlet k and / denote either value (- -) of the type
(--)(-+). There are 12 possible sets of values for each pair of
indices, (e,a) [or (h,8)] of H s, because the pair has the
condition aCe (BCh). If we give a number to each pair of
indices, (e,a) and (4,8), following the way given in Table I,
the matrix 4 can be expressed in a square array of (12X 12)

elements H ,’;f, arranged in 12 rows and 12 columns; thus

44 4,4 4,1
Hiy, Higs Hs
44 44 4,1
A= Hi, Hisgs H7ys
1,4 1,4 1,1
Hiy,, Higys Hiys,

While 12 columns of the (6 12) matrix B are arranged in
the above order, six rows are arranged in the order given in
Table I1. The matrices Cand D are also arranged in the same
manner as A and B. If we show the matrices 7,7',7",U, U’ in
Tables ITI-VII, the system of equations (6) can be symboli-
cally written in the following matrix form:

G »)-(r %)
e o) 0)G 5 @

Following the AGS method suggested in Ref. 4, we can ex-
press the above equation in more simple matrix form,

H=T+T-UH (8)
by introducing the matrices H, T, and U,

Yoshiko Matsui 2452



TABLE X. The elements of matrix £2”. All elements need to be multiplied

TABLE XI. The elements of matrix ”. All elements need to be multiplied

by a factor of §. by a factor of .
No. 1 2 3 4 5 6 No. 1 2 3 4 5 6
o1
L 7 ! T
Fr -1 3
2 TIJ - 3 _'7'-2-31
. T 4 ~Ta
4 Tl_z‘ _ 5 _“T-,_|
5 Tl_‘l _ 6 24 _‘T_]
6 T 34
7 Ts
8 Tt

S— 2w
3
St
~3
21
~ nl
1) 21

ey 9 - ) - 2)

If we multiply by T~! from the left and by H™' from the
right, Eq. (8) can be rewritten in the form

H-1(z) =T~ !(z) — U(2). )

If we write Eq. (9) for z=E + i0 and z= E — i0, and get
the discontinuity by subtraction and multiplication by
H(E + 0), H(E — 10) from the left and right, we can get the
following equation:

H(E + 0) —H(E — 0)
= H(E + 0){U(E + i0) — U(E —
— HE +0){T~ (£ +0)
— T Y(E — 0)}H(E — i0).

0)}H(E — i0)

(10)

If we denote A(E + i0) and 4(E— ) by A, and 4_ and
likewise for B, C, D, U, and Q, Eq. (10) can be expressed in
terms of each element; for example,

A, —A_
=A, (U, —U)A_+C,(U’, —U"_)B_
—A,(Q, —Q )A_—A (Q" —Q" )B_
—C (Y, —Q_)A_—C. (27 —Q”)B_.
(11
J
HE(E+D) -HE(E-0) =23 T $ 355
¢ yCedCcuCevCe
-2
¢ yCecbCcrCc
-2 2 T HE
¢ yCec dCec
1
HERDP>
K ¢DxdDx
2453 J. Math. Phys., Vol. 29, No. 11, November 1988

E+0) U (E+0)Ag(E)US ™ (E — D)

Here, we denote the inverse operator T~ ! by

o Q"
-1 __
™ =(a o)

for each matrix ) given in Tables VIII-XI. Similar expres-
sions are available for B, C, and D. The first two terms of the
right-hand side of Eq. (11) originate from the discontinui-
ties of the transition operators for (3 + 1) and (2 + 2) sub-
systems. The last four terms originate from the discontinuity
of the transition operator for the (2 + 1 + 1) subsystem.

Let us again return to the first notation, in which the
superscripts a, b, ¢, and d express different partitions of the
two types: (3 + 1) and (2 + 2). Then Eq. (11) can be writ-
ten in the more explicit form

HY% (E+0) — HE (E—i0)
=Y 3 ¥ HE(E+i0)
¢ yCcdCc
X{Uia(E+'0)—U‘5(E—zO)} @ (E — i0)

& ¢D2xdDx

><{T cHE+10) — T '(E—i0)}H & (E— ),
(12)
where 7 denotes the sign as follows: 7 = 1 when ¢ = d and
n = — 1 when c#d. This equation expresses the discontin-

uity not only of 4 but also of B, C, and D. Hereafter we
proceed with this notation.

Now, we may use the discontinuities of U} and T
obtained in the Appendix to get

HE(E+i0)3,,V,A(E+E,,)eJ,,V,5,,HE (E— 0)

S HE(E+O)US (E+0)A,, (E)Us(E—i0)HE, (E — i0)

b (E — 10)

ZHB,(E+I'0)T“‘(E+10)A T YE—i0)H¥(E— )
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+%n§_j HE(E+0)T 7 (E+0)AT - (E—0)H% (E — 0)

¢Dxddx

*"“'72 D ;KHZ‘K(E+10)7‘;'(E+ tU)KoT:’(E—-K))Hﬁ;(E_,O)] )

X ¢cOK

(13)

Because the third term of the right-hand side is expressed as the simple sum of the index ¢, we must further proceed to calculate
5o that the third term can be expressed in a double sum of indices ¢ and d, which are the superscripts of the two groups of

operators H US4+ and Uy~ H 52.
In order to do so, note first that the third term in question is expressed by the difference
27 [ — z D z 2 HE(E+ YU (E + 0)A(EYUE ) (E — i0)H % (E — i0)

d yCc éCd
+ z z ;c; 8“H S (E+ D)UY (E + 0)A(EYUE~(E—i0)H% (E — i())] .
Then it remains to calculate this second term, which we shall denote by J.
Next, we define an operator F 37 by
S 85, M Fa Wi, = W

8Ch yCbhb Dy {Da
From the integral equation (4) for W, we have for F, the following equation:

Fi =G8"85, + Gy ¥ 3 S 885, M} F .
8CbyChbcedy
From the definition of F 35, we also have
~T,ULG,= Y 8"Fg,.

[3Y:3

Together with the relation

U@ =3 3 8,:Mp,(2),

puCd vCd
these results lead to

Y GUSHk

6Cd

=3 3 Y 8.GMLT,ULT, = )y 8.s0“GM L F5T,Go= — 3 {Fii,

8Cd uCd vCd CduCd vCdeDd uCd

We may now use Eq. (15) to eliminate H &, in J in favor of F 42, as follows:

J= zzz ZGC"H (E+i0) U (E + 0)Go(E + 0)U s~ (E — i0)H % (E — i0)

¢ d yCcdCd

=333 T FHE(E+i0) UL (E+i0)Gy(E—~i0) U™ (E—i0)H 3, (E — i0)

¢ ‘@ yCcb8Cd

=33 3 3 56" To(E+ OV (E— 0)HE(E—0)
c d

8Cd uC

33 T 8“8, HE (E+i0) Uk (E + 0)T, (E— i0)
d

c yCeuCd

- 3Gy (E + 0) T4 (E + 0)FE (E+ i0) UL~ (E — i0)H % (E — i0)
- B B

8Cad uCce

+35 5 I SHE(E+0)ULY(E+ 0)Fs (E—i0)T, (E — i0)G,y(E — i0)
d yC
=3y 56"84,6%8,, T3 (E + i0) T, (E — 0)Gy(E — i0)
c d

-3 ; ; 596%8,,,6%84, Go( E + i0) T4 (E + i0) T, (E — i0)
c uCdACce
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— G,6%8,,}T, G,

(15)
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—3 Y 5TH(E +0)Gg '(E — 0)F % (E — i0) T, (E — i0)G,(E — i0)

d AC

1%

+ 3 3 BUGo(E+ 0)T4(E+ 0)F i (E+10)Gg ' (E +i0)T, (E — i0)

C

~,

[

LY

— 3 3 8Gy(E + 0)T4(E + i0)F i, (E + 0) T, (E — 0) Gy (E — 0)

Cc

®

+ ; 8“Go(E + 10) T4 (E + i0)F % (E — i0) T, (E — 10)G,(E — 0)

Cd

T

+y ; S S 8“Gy(E+ 0)T4(E + 0)Ff, (E+i0)G g '(E— 0)F % (E — i0)T, (E — i0)Gy(E — i0)
c uCcAcd
-3 8“Gy(E + 10) T4 (E 4 0)F 5 (E + i0)G 5 (E + i0)F% (E — i0)T,, (E — i0)G,(E — i0)
¢ d puCdACe

=27 Y Y 56°5,,Go(E + 0)Ty(E + i0)Ao(E) T, (E — i0)Gy(E — 0).

ACa
Here, this last term must be again expressed in the term including H da . So, we sum Eq. (6) over c and Hs

SSYHE=YYT6.6+3Y Y &Y TULHE.
¢ puCc ¢ uCe ¢ uCcdDu 8Cd
This right-hand side can be further transformed into
2[2 7,5, 5“'+Z 3> 3T U;L,Hgg].
d uCdaCd

Using the fact that AO(E ) gives zero acting on G4 '(E) multiplied by H < sia» ONE can finally express J as

J=27i 3 876,,Gy(E + 0)T5(E + i0)Bo(E) T, (E — 0)Gy(E — i0) — 2miGo(E + i0) T4 (E + i0)Ay(E)G 5 '(E — i0)

ACa
[z T,(E- m)a,,,,6°°+z YD) T,(E—i0)Us(E — 0)H % (E — i0)
uCa d uCd d
= —2mGy(E+ 0)T,(E+0)R(E) S 3 3 T, (E—i0)Go(E — 0)UZy(E — 0)H % (E — i0). (16)

d uCd éCd
KZ defined the scattering amplitudes that describe physical four-body processes by taking appropriate matrix elements of

the following operator:
T2)=3 3 3 I V,8,HE (2)8,.V;. (17)

§Cb{CapBChbaCa
We can get the unitarity relations for the physical amplitudes once we obtain the discontinuity of this operator. The necessary
equation is obtained by inserting Eq. (13) into Eq. (17) and using Eq. (14) with J expressed by Eq. (16),

T%(E + i0) — T*(E — i0) = 2mi [ -3 S T*(E+i0)B,, (E)T“(E — i0)

-3y 3 ; S 3 V.b;sHY (E+ i0)

¢ £Cb ;‘CaﬂCb aCa yCe 7Cec m

XU, (E+0)A,, (EYUS(E—0)HE (E — 0)8,.V,

EDPIDIPIPIPIPIPIPIPIPWL L ACE LY

d EChbL{CaPBChbaCayCcdCdoCe7CecuCdvCd

X8,e M, (E + 0)Ay(EYM (L, (E — i0)8,sH % (E — i0)8,, V,

+IYISTTTY 2 2 Ve8:5Go(E + i0) T, (E + i0)

d £ECb{CaBCbaCadCduCdvCd

XB(E)M 2, (E — i0)8,,H 3 (E — 10)8,. V;
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S S Ve Tp(E +i0)

+7 2223

Cb{CaBChbaCacCxdCx m

3
XU (E+i0)A,, (E)US(E—i0)T,(E—i0),.V,

— V.8:T5(E + i0
+ 2 77 Cb; ﬁgbc#;ac;xagx £ B( +l )

& a
XUE(E + i0)AL(EYUZ(E —i0)T,(E —i0)5,.V,

1 = =
—5 1353 35 3 3 VST, E+D)

ECh{CafAChbaCacCkdCx

XU (E + 0)By(E)U (E - i0)T, (E — 0)3,, Vg] , (18)

where

A, (E)=AJE+E.,)el., :f |rd)d 3r 8(F — E — E,,,) (rd% |,
A,.(E)=AE+E,,)el,, =f lrpg,)d°rdp8(F +p° — E—E,, ){(rpp |,

Ay(E) = J:[ Irpa)d *rd’pd3q 8(F + p* + ¢ — E)(rpq|,
A (E)=[I— G (E+i0)V,]B(E)[I - V.G, (E—i0)]

=” rpY)d *p dp d*q 5(F + 5 + 7 — E) (rpi=.

In the third and fourth terms of the right-hand side of Eq.
(18), we use the following relations, respectively:

Ut (2) =3 ¥ 8,M:. (),

oCe1Ce

T (2)G(D)Uls(2) = — 3 8,,MZ,(2).

vCd

lIl. UNITARITY RELATION FOR THE AMPLITUDES
WHICH DESCRIBE PHYSICAL FOUR-BODY
PROCESSES

From the operator relation in the previous section, we
shall derive in this section the unitarity relations for those
on-shell amplitudes #*, % **, and & * that describe phys-
ical four-particle processes, elastic/rearrangement, partial
breakup, and full breakup.

Following the treatment of KZ, in the case of a (3 + 1)
subsystem we introduce the complete set of four-body chan-
nel eigenstates, {|r®.”),|rW{D.E ), [r¥P *)}, for all 6Ca,
where | P4} is a three-body bound state (we assume several
three-body bound states per channel) of energy — E,,,
| W9+, ) isthe (outgoing wave) scattering state correspond-
ing to an initial state of a bound pair (6m) and a third free
particle with relative momentum p, and |W{3 * ) is the (out-
going wave) scattering state corresponding to an initial state
of three free particles of relative momenta p and q, whiler, is
the momentum of the fourth particle relative to the center of
mass of the other three.

For the case of a (2 + 2) subsystem, the complete set of

2456 J. Math. Phys., Vol. 29, No. 11, November 1988

channel eigenstates is given by {|s®.”), |s¥(3t),
|sWi’ )}, In this set, if a = (12)(34) and 6 = 12, y = 34,
|s®{) = |s@p @) represents a state of two bound pairs
moving with relative momentum s, [s¥(5)%) = [sp . 9E)
represents a state where the § pair is bound, while the y pair
is in a scattering state of initial momentum q,,, and so on. In
what follows, we will in general not treat the two kinds of
indices a separately.

With these complete sets, KZ defined a fully-off-sheli
extension of the above three scattering amplitudes as

e (r1%z) = (l"pf,sb)lT"“(z)!r“’)q);a)%
F e 2 (BE%32) = (P25, | TH(2) [€O02),
#ie(maria) = (FU - | T(2) [rO04).

At the same time the amplitudes for the physical processes
reverse to ones of .¥ and & which are also defined as

ﬁ’ba

n(rm)

g )l:a( r;r(O)p(O)q(O);z) — (rq)f!b) t T ba(z) {r“’"l/

(r;r(Olp(O);z) — (l'q)f,b)ITba(Z)ll‘{O)‘y(“) +w'>’

(mm)p'
a) +

(«JD {0}
g *

Next, let us derive the on-shell values of these ampli-
tudes. Let all operators be taken on shell. There is a relation-
ship between the three-body initial-state wave function and
its Faddeev components,

qu);‘;’; — GOTQ z SaAGGV).ir(D;(;a))- (19)

ACa
If we now take the matrix element of 5 fully-on-shell, we
can use Eq. (19) to obtain
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x% (rr%E + i0) the on-shell amplitude & can be written

' O F 4+ 0
=T T GOR UL (E+ D)D), - (TBrE+ D)

BCbaCa b P
- M®,(E +0)8,T5(E + 0
In order to get the on-shell value of %, we need the expres- .,;,, ;,, pg',, a;,, (rpq|M oy (E + 0)b55 T (E + 0)
sion for |[r¥{2, > ) in terms of the initial state |rpg 5, ), which X U (E + i0)|r9).
1s Further, we recall from three-body theory that
5 B~y = Ub, (E— 0)|rpp’,). 5 .
l;b Spa Vi e WD) ge( 0)|rpp ) T, (E — i0)Go(E — i0) Eh Ba Vi r¥ sy
We then have for on-shell amplitude .# = T5(E —i0)Go(E — 0)U} (E— i0)|rpgp&,)
F Gemy n ((BIE + 10) = — K (E—0)|rpp7,),
= (rpg 5| U 5 (E + 0) Ty (E — 0)Go(E — i0)85, V, [r¥ ~
ﬁ;ba;a d g;b 5 (E — 0)Go(E — 0)85: V [1¥p ™)

X T4(E + 0) U (E + i0)|[rd?), -
p(E+ D) s Iree = 3 T,(E—0)Gy(E — D)3y

where # + p* — E,,, =7 — E,, =E. £Ch
{&lso in the case of the full breakup process, by using the X z Mg/1 (E — i0) |rpq)
relation ich
Velr¥2 =)= > M, (E—i0)|rpg) =-3 W 5. (E — i0) |rpq).
oC b ACH
|

A. Elastic and rearrangement

Before starting to calculate the discontinuity of #°2%,, we must define some additional amplitudes:

C oy  (BF%E +10) = T (rpg s, UL (E + 0) [r90L2),

aCa
D (rpgr®%E +0) = 3 (rpyg |U%(E + 0)[rO9L0),
aCa

ME(rpgr™E +10) = Y (rpq|U % (E + 0)[r®L0),

aCa

Z niem (GFOPUE410) = 5 (rdf)|U S (E + i0) [r%p%9 7, ),

BCb

DY (BrODOq%E +10) = 3 (r®| UL (E +i0) [t k),

BCH
A (rrOpOqOE + j0) = BZ (r&P | UL (E + 0) [rpOq?).
Cd
The unitarity relation for the elastic and rearrangement transition amplitude is expressed as
20 (rr%E + i0) — %, (rr'®E — i0)

=-2myy f Hr . (r;rsE + 0)8(#2 — E,,. — E)I%, (v';f'%E — i0)d>r

— 27 z 2 z J ?2' ‘Efm) (nr'pE + 10)6(?2 +ﬁ’2 —E, — E)yr(:,.m) ° (l"p';r(O);E_ i0)d?3r d3p:

c Cecm

-2y Y f G (rr'p'q;E+ 0)8(F2 + p2 4+ §* — EYE @ (rp'q;r®E — 0)d > dp' d 3¢
c d

+2rin Y Y Y EJ B emy (GE'DE + 10)8(F? + p* — E,,, — E)C tmy o (X058 %E — 0)d?F d°p'

x ¢DxdOx m

+ 2min 2 2 z f gz' ‘(:K) (r;r'p'q;E + 1‘0)6(;’2 +ﬁ:2 + 612 — E)g'(ix): (r'plql;rlo);E— 0)d 3y d3p' d3q:

x ¢DxdDx

—2rigy ¥ Y f]ﬁfx (rr'p'qGE + 0)8(F* + p* + §* — E) 4% (rp'q;r'E — 0)d>r d*p' d’q'.

x ¢DxdDx
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B. Partial breakup
As in Sec. HI A, we define the following additional amplitudes:

Alumy BR'GE—F +10) = Y (pph |k ls(E— P +i0)|p'q),

BCb

P Gumy oy OBEDSE+10) = 3 5 S (2WD |V, 8 HE (E + 0)US, (E + i0) r'p'g L)
ASh &%

yCe

Dy (e’ P'QE + 0) =

Cb coCc7Cc

BCb ECH yC
‘%l(,/lm) ‘(:xm) (rp;f'P';E"' io) = z Z (r‘l’gzzn)p | V§6§ﬁ TB(E + io) Uﬁx (E + IO) |r,p’¢fn
BCbECH

I um oy OBFPGE+10) = 5 3 0V 5 |V Bos To(E+ i0)UL(E 4 i0)|r'p'd),
b
{r

Ch £
»>
<

b

BChH
& tumy (ORI PGE+i0) = 3 W VB T (E + )UK (E + i0)|r'p'q’).
BCb &

We then obtain the discontinuity of %,

F tumy s (rpF%E + i0) — F 2, 4 (rpr O E — i0)

C.F

= —2miy z f F Cumy e (Opr;E + 10)8(F? — — E)5¢ (r'sr'E — i0)d *r

—2my f P lumy (omy (IDE'DE + 10)6(F? + p7 — —E)F oy a (D sr'YE — 10)d ?r dp

c chm

2 > (r‘P§um)pIVg5§BHﬁ,,(E+ 1'0)6 M, (E+D)|rpyq),

— 27 z Z f D oy X' PGE + 10)8(F? + p7 + G — EYEL(r'p'a;r'%E — i0)d 3 d°p' d g

— 27 Z f O(r — )ALy (BP'QE — P + 10)8(F? + p2 + §2 — E)E“(r'p'q';r'%E — 0)d*r d *p' d ¢

MELDIDIPIDY f Py ey OBEDSE A+ 10)8(F? + B — By — E)E Sy (P50 E —

K ¢Ix Km

+21in > N N | Ll o OBFPGE + 0)8(F? + 5%+ §° — E) D a (rp X' %E — i0)d 3y dp' d ¢

& ¢DxdDx

—2min Yy Y f Ly S (ODI'D'GE + 10)8(F? + p2 + §° — E) A% (VP X' E — i0)d > d°p'd g

K ¢Ix d:)x

ull breakup amplitude
To proceed as before, we define additional amplitudes by

(PGP GE—F +i0) =Y Y (pqlwis(E—7 +i0)|p'q),

ACb BChH

2m GIPE+ =3 T 5 T Y (rpalM2 (2)8,H 58,V IrO¥50),

BChE{ChoCh yCe ACe

Ze(rpgrp;E+0) =3 S Y Y Y (r‘P(b)‘lVgﬁgﬁH (E +10)8,,M: (E +i0)|rp'd),

BCbh ECH yCeoCec 7Cc

U my (rPGE'PZE+0) = S % (PWD ~|Vbes THE+ D) UL(E+i0)|rpes,),

ACH £Ch
7P (rpgr' P GE+i0) = Y Y (r¥h - |Vedes Ts(E+ YU L (E +i0)|rp'dk),
BCbECSH
¥ " (rpgr'p'q;E + i0) = BZ PIK L 3t} %8 T,(E+i0)UL(E +i0)|r'p'q
b £Ch

Finally the discontinuity of & is given as
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&l (rpg;r'®;E + i0) — &5 (rpq ;r'%E — i0)

= -—217'122[?"‘(1'1)(1,1' ;E+ i0)8(F*—E,, — E)#™

-2y ¥y f 2%, ., (rpgr'p;E + 0)8(¥2 + p? — E,,, — E)F <, * (r'D';r%E —

c 7Ccm

-y Y f I(rpgr'p'qE + 10)8(F? + % + 7 —
c d

<@ (r';r%E — 10)d 3

i0)d3r d’p
E)&¥*(r'p'q

TOE —i0)d3r d3p' dq

—2my f O(r — ) (pgp'q;E — P + i0)8(F> + 2 + §* — E)E X (r'p'q;r % E — i0)d > dp' d ¢’
d

+27in Y ¥ ¥ X | Uy (r0GI'DSE + 0)8(F? + p — E,,,

x ¢DOxdDdxk m

+2rin S 3 S

Kk ¢DxdDxk

2 Y 3 X

Kk ¢DxdDx

APPENDIX: UNITARITY RELATIONS FOR THE
AMPLITUDES 7,03

In this Appendix, I shall derive discontinuities of the
operators 7', (z) and U%, (2), following Lovelace’s treat-
ment? with his notation.

Three-particle operators are denoted by small italic let-
ters, two-particle operators by putting a hat on them, and
four-particle operators by capital italic letters, to avoid con-
fusion later. Let A, be the two-particle free Hamiltonian and
D, be the two-particle interaction. We now consider the total
two-particle Hamiltonian h = h0 + ¥, and its resolvent op-
eratorg, (z) = (h —2z) Y. Under the relevant condition of
the potential, h, and 2 £, (2) have spectral representations as
follows:

-3 EpJ,n +f dE EA,, (E),
5 (A1)

L[ ae®,

E—s

ga(z) '—ZE +s

where Aa (E) with E>O0 is the projection operator for the
continuous eigenstates of #, on the positive real axis, and J,,,,
are the projection operators for the bound states of binding
energies E_, . As an exception we also use capital italic letters
for these two- or three-particle projection operators. The
projection operator A, (E) is given by the discontinuity of
£, (2) across the right-hand cut

B (E) = (1/270) {8, (E + 10) — &, (E — D)},
For the bound-state projection operators, we have

(QJ..1q) = Z @ (@@ * ().

7% (D' QGE + 0)8(F? + p2 + 3% — EYD L, 2 (r'p' ;1% E —

¥ E(rpgr'p'QGE + i0)8(F? + p2 + 3% —

~E)E oy 2 (' ¥ %E — 0)d 3 d 3p

i0)d? d3p' d3q

E)A%(r'pq;rE - i0)d? dp'd’q.

-

All these relations are rigorously proved by many math-
ematical authors.'!!?

Next we turn our attention to the spectral representa-
tion of the three-particle resolvent operator g,(z)
= (hy + v, — z) ', Let us introduce the convolution for-
mula® for the resolvent R(z) = (H —z) ~! of an operator
H=h,81+ I®h, with variables separable. Here we will
ignore temporarily the notational distinctions of three- or
four-particle operators. If y is a smooth contour separating
o(h,) (thespectral set of #,) from z — o(4,), and, say, coin-
cides with the imaginary axis at large distances, then

R(2) =—1—f rz—§ er($)ds.
27i 1%

Applying this convolution formula to 4, = h, + v, and us-
ing (A1) gives the spectral representation of g, (z),

(A2)

Aan /1) AN
Lw=-3[ fmlla [ o=
where
A, (A)=RAA+E, )®JT,,
Ay(E) = (1720 {2o(E + 10) — Bo(E — i)},

with 2,(z) = (hy — 2) ™", and
AL (E)=[1—g,(E+ 0w, ]A(E)[I—v,g,(E—)].

Equation (A2) also gives the expression of the four-
particle operator G, = (Hy+ V, —z)~

G,(2) = —1—J &(z—-8) eg,(5)dS.
2mi Jy

From this relation we wish to calculate the discontinuity of
G, (z) as follows:

Bo(p) ®A,, (1)

1 -
10)_151-{%%2ff [#+§ E—ie p+(— E+l€}d#f—5an A=<

dA d¢

+11m——ff { ] f OLEAC I
e~02miJyJo lpu+&— E»—ze ,u+§ E+l€ A—¢

=1
- 1
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) f [ ams+s- E)duf

JJ 2mid(p + & — E)du f
277'1 y JO

Bo(p) ® A, (A)
A-4
Ao(,u) GA’ (4)

dA d¢

2o P a2 aade

=ZJJ AO(E—g)sA.,,,(l) didE+ ff AO(E ;)eA 1) A dt

A=

-3 21rif Ro(E— 1) @ Ag(A + E,,) ©7,, dA + 21rif 'KO(E—A) ® AL (A)dA
n E, 0

an

=27i ¥ A, (E) + 27ibs, (E — P),

where &, (E) = Ay(E+E,_,) ®J,,.

Here we denote the four-particle projection operator by
putting a tilde on the letter A.

Now we can get the discontinuity of the operator
T 7 '(2). To do so, note first that

T, (2) = — G, (2) + Gy(2).

Then we can easily derive the relation

T-WE+0)—T;(E—i0)
= 2T 7 WE+ 0)A(E)T 7 '(E - i0)
+ T (E + 0){G, (E + 0) — G, (E— i0)}
xT 7Y (E—0).

Inserting Eq. (A3) to this relation, it follows that
T-UE+0)—-T;Y(E— )
=2miT 7 (E + i0)A,,(E)T 7 '(E —i0)
+ T 7 Y(E+i0)I — G, (E+ i0)V,)8,(E)
X(I— V,G,(E—i0)T 7 (E—i0)
~2mT 7Y E+ 0)A(E)T 7 '(E — i0).

I conclude by obtaining the discontinuity of the opera-
tor Ujg, (z). Consider the three-particle resolvent operator,

g@=(h+ 3 v.-z) -

aCa

By the spectral decomposition theorem established by Fad-
deev,

® Aua(d)
= — ————d/l
ga(Z) z +Ean a;ﬂ i —Z

n

= Ay (4)
+ dA.
J; A—z
In this representation the projection operators are defined by

= o) (@),

Aam,ﬁ(/{') = (I— z g"(/l + I.O)UY)

r#a
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(A3)

X B (A) (1— vs €A — m))

S#a

— (¥,

= f 2= Yd%p 5(5° @s |
AS (L) = (1_ S g+ iO)vy)
4

X Kq(4) (I— Svgi- :0))

=J|\Pl‘,:)“)d3pd3q5(132+qz—}.)(\ll,‘,:"|.

In order to proceed, we need the discontinuity of the
four-particle operator G “(z),

G(z) = # f 8o(z — £) @2 O)dL.
Y

A similar procedure to that which leads to Eq. (A3) gives
the required result

G*E +i0) — G°(E —i0)
=21 $ Ro(E + E,,) ®,,
+27 Y Dppa(E—P) + 2wk} (E — P)
aCa
=2my A,.(E)
+27 Y (I— > G"(E+10)Vy)
aga r#a

X B o (E) (1— SV, G"(E—IO))

S#a

+ 2mi (I— S GE + 10) V,)
Y

X Bo(E) (1— ; VsG*(E— 10)) )
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Finally, from the definition of U, we can get
Uls(E+0) — Uss (E—i0)

=-2my ¥ 3 VA, (B,

n uEy vES

—27iy ¥ Ul (E+0)3,, (E)Us(E — i)

m aCa

—2miU %+ (E + 0)A(E)U L~ (E — 10),

for the discontinuity of U5 across the right-hand cut.
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Invariant conformal vectors in space-times admitting a group of G;

of motions acting on spacelike orbits S,
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The paper deals with four-dimensional space-times admitting locally a three-dimensional
group of motions G, acting on two-dimensional spacelike orbits S,. The local existence
problem for conformal vectors invariant under G, is shown to be equivalent to the local
existence problem for Killing vectors of a given two-dimensional pseudo-Riemannian metric g.
This problem is explicitly solved in terms of the Gaussian curvature R of g and two of its scalar
differential concomitants. The results are applied to the case of dust-filled space-times, where
an exhaustive list of metrics has been obtained by using the algebraic computing language SMP.
The metrics are either homogeneous, self-similar, or Friedmann models.

|. STATEMENT OF THE PROBLEM

Let us consider a four-dimensional pseudo-Riemannian
manifold (V,,2). A vector field v is said to be conformal if

£,(8) =248, ()
where £ stands for the Lie derivative, and the conformal
factor ¢ is a ¥V, function. Conformal vector fields"? are a
well-known generalization of Killing vector fields, and the
properties of space-times in which (1) admits nontrivial so-
lutions have been recently studied.>®

The purpose of this paper is to discuss the existence of
solutions of (1) with the following two restrictions: (a) the
manifold (¥,,2) admits locally a three-dimensional group of
motions G, acting on two-dimensional spacelike orbits S,
and (b) the conformal vector v is invariant under the group
G;.

Condition (a) means that the two-surfaces S, are maxi-
mally symmetric, so that the metric g is conformal to the
direct sum of a constant curvature metric 4 on S, and a
metric g on the surfaces ¥, orthogonal to S,; that is,

g=Y*geoh). (2)

The function Y is invariant by G, and it is defined up to a
constant multiplicative factor. One can choose it so as to
have

Ric(h) = kh, (3)

where Ric stands for the Ricci tensor, and k=1,0, — 1l is
the (S,,h) Gaussian curvature, corresponding to the cases of
spherical, plane, or hyperbolic symmetry, respectively.

Condition (b) implies that the vector field vis tangent to
V,, and it leaves the metric 4 invariant.

The decomposition (2) allows a straightforward com-
putation of the conformal tensor of g, Conf(g). One gets in
this way the following proposition.

Proposition 1: The necessary and sufficient condition for
the conformal tensor Conf(g) of (V,,#) to be zero is that

R+k=0, 4)
where R is the Gaussian curvature of (V,,g); that is,
Ric(g) =Rg . ()

It follows also from (2) that every conformal vector v of
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£ must be a conformal vector of (g ® A#) and vice versa. Al-
lowing for the fact that A is left invariant by v, it follows that g
must be also invariant by v as stated in the following proposi-
tion.

Proposition 2: In any space-time admitting a group G, of
motions acting on spacelike orbits S,, a vector field v invar-
iant by G, is a conformal vector of (¥,,2) if and only if itis a
Killing vector of (¥,,g); that is,

£,(8)=0. (6)
The conformal factor ¢ is given by
£,(Y)=¢Y. 7

Proposition 2 shows the relevance of the study of the
Killing vectors of ( ¥,,g) to that of the invariant conformal
vectors of (V,,8).

Il. KILLING VECTORS IN (V>,9)

Let us consider a generic two-dimensional pseudo-Rie-
mannian manifold (V,,g). The first set of integrability con-
ditions of the Killing equation (6) is

£,(R)=0, (8a)

and the remaining conditions are obtained by repeated appli-
cation of the covariant derivative operator D (relative to g),
namely,

£,(dR) =0, (8b)
£,(DdR)=0, (8¢)

and so on. The dimension  of the linear space of solutions of
(6) is known to be equal to (3 — ¢), where g is the rank of
(8) considered as an algebraic linear system with the compo-
nents of v and its first covariant derivatives (the antisymme-
tric part) as unknowns.'

It is well known that » may be either 3, 1, or 0, and that
is equal to 3 if and only if R is constant. It is also known® that
Eq. (6) admits as a nontrivial solution a vector field v with
zero norm (isotropic vector) if and only if (V,,g) is flat
(R = 0). It would be useful to set up an analogous condition
to know whether 7 is equal to 1 so that the solutions of Eq.
(6) are proportional to a single nonisotropic vector v.
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To provide one such criterion, let us construct the two
following scalars:

sl =tr(dR®dR), s2=tr(DdR), (9)

where tr is the trace operator relative to g. The condition can
now be stated as follows.

Theorem: In a two-dimensional pseudo-Riemannian
manifold (¥,,g) the solutions of the Killing equation (6) are
proportional to a single nonisotropic Killing vector v if and
only if 51 is not zero and both 51 and s2 are functions of the
curvature R only, that is,

s1#£0

dsINdR=0, ds2AdR=0, (10b)

where A stands for the exterior product of forms, and the
scalars s1 and s2 are defined in (9).

Proof of the necessary condition: Let us suppose that R is
not constant (otherwise » = 3), and let v be a nonisotropic
Killing vector, so that Eqs. (8) hold. It follows from (8a)
that 51 cannot vanish. In addition, one gets easily from (8)
that

£,61)=£,(2)=£,(R)=0,
so that Egs. (10b) must also hold.

Proof of the sufficient condition: In (V,g), the condi-
tions (10) imply the following tensor relationship:

DdR =A(R) dRedR + B(R)g, (12)

where A and B are functions of the curvature R only. This
implies that the rank g of the full algebraic system (8) is
equal to that of the system of three equations (8a) and (8b).
In addition, one gets from the first condition in (10b) that
Eq. (8a) implies the relationship

tr(dR® £,(dR))=1£,(s1) =0, (13)
so that the rank g of (8a) and (8b) is at most equal to 2, and

there is at least one Killing vector v. Finally, condition (8a)
ensures that R is not constant (75 3) and v is nonisotropic.

(10a)

(1)

lil. THE SCALAR A AND THE FOUR-DIMENSIONAL
RICCI TENSOR

The preceding sections show that the scalar R plays a
crucial role in determining the conformally invariant prop-
erties of the metrics (2). It is the essential component of the
conformal tensor Conf(g) (see Proposition 1), and it deter-
mines, together with its differential concomitants s1 and s2,
the existence of invariant conformal motions.

The computation of R can be performed either from its
definition (5) or from the four-dimensional Ricci tensor
Ric(g). A partial result is stated in the following proposi-
tion.

Proposition 3: Let us assume that there exists a timelike
unit vector # and two scalars z and p such that Ric(g) ad-
mits the decomposition

Ric(§) = (u +plueu +i(u—p)g (14)

(perfect fluid space-time). Then the following relationship
holds:

R+k=6M/Y—puY?, (15)
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where M is the Hernandez—Misner!? scalar, defined as fol-
lows:

M=}Y[k—-Tr(dYedY)],

the operator Tr being the trace relative to the metric 2.

Proof: 1t follows from a straightforward computation of
the Ricci tensor for a metric g of the form given in Eq. (2).

In the case in which Ric(g) = 0 (vacuum space-time),
it is well known that the Hernandez—Misner scalar M must
be constant. Allowing for Eq. (15), this means that either
M = 0 (flat space-time) or the scalars R and Y are algebrai-
cally related one to another, so that it follows from Eqs. (7)
and (8a) that any invariant conformal vector of @ must be a
Killing vector. This is in keeping with one recently published
result of Garfinkle.®

The vacuum case, however, is trivial due to the well-
known Birkhoff theorem.'’~! All the possible metrics and
their Killing structure are well known.'* It is worthwhile to
consider then a more general situation.

(16)

IV. APPLICATION TO DUST METRICS

Let us consider now the case in which Ric(g) admits the
decomposition (14) with p = 0 but 0 (dust space-time).
All dust metrics admitting a group G, of motions acting on
spacelike orbits S, are known.'* A systematic, computer-
aided'® application of the first condition of (10b) to all these
metrics has shown that, in order to admit (at least) one
invariant conformal vector v, the metric & must pertain to
one of the three following families.'®

(a) Friedmann metrics,"” given by

g= —dtedt+L*()[(k—a*) 'dredr+rh],
(17a)

where a is constant and the function L(?) is defined by

L x 172
=[], ()
b—ax
with b constant. In this case, one gets that
M=;br’, u=3b/L? R+k=0, (18)

so that there are three invariant conformal vectors, one of
them being tangent to the ¢ coordinate lines.

(b) Self-similar metrics,'®'° given by
2= —dtedt+ (Y (k—a) 'dredr+ Y?h, (19a)

where a is constant, the prime stands for » derivatives, and
the function Y(¢,7) can be expressed as follows:

4 x 172
t=br+f [ ] dx, (19b)
2r—ax
with b constant. In this case, one gets that
M=r u=2/(Y?Y"), (20)

and R + k can be expressed either as a function of ¥ /r or of
t /r. Inthe generic case (R 4 knot constant), the only invar-
iant conformal vector is

v=td, +rd, , 210
and it follows from Egs. (7) and (19b) that it is a homothe-

tic vector of g (¢ = const). There are two additional invar-
iant conformal vectors only when both a and b are zero in
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(19), so that the metric is isometric to the a = 0 case of the
Friedmann metrics (17).

(c) Homogeneous metrics,?®>*

given by
g= —[t/(a—kt)]dted:
+ [(a—kt)/t]1 Z*(t)dredr+t3h, (22a)

where a is constant and Z is the following function of #:

z=f [—"——]w dx+ b, (22b)
(a — kx)?
with b constant. In this case, one gets that
M=la, pu=Q/Z)t *[t/(a—kt)]'?, (23)

and R + k is a function of z. In the generic case (R + & not
constant), the only invariant conformal vector is

v=d,, (24)

and it follows from (22) that it is a Killing vector orthogonal
to u. There are two additional invariant conformal vectors
only when both k and b in (22) are zero, the metric being
isometric to the case k = 1, a = 0 in the Friedmann metrics
(1n.

The results quoted here ensure that any dust® metric of
the class considered admitting an invariant conformal vector
v must pertain to one of the metric families (17), (19), or
(22). The inverse result, that is, that every metric contained
in (17), (19), or (22) admits such a vector v, is well known
in the case of Friedmann metrics (17), and it can be verified
by using the explicit expressions (21) and (24) of v in the
other two cases. One arrives then at the following results.

Proposition 4: A dust metric admitting a three-dimen-
sional group of motions G, acting on two-dimensional space-
like surfaces S, will admit at least one conformal vector v
invariant by G, if and only if it is isometric to a Friedmann
metric (17), to a self-similar metric (19), or to a homoge-
neous metric (22).

t23
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Proposition 5: A dust metric admitting a three-dimen-
sional group of motions G; acting on two-dimensional space-
like surfaces S, will admit three invariant conformal vectors
if and only if it is isometric to a Friedmann metric (17).
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The existence of affine collineations in space-time is discussed and the types of space-time
admitting proper affine collineations is displayed. The close connection between such space-
times and their holonomy structure and local decomposability is established. Affine
collineations with fixed points are also considered as is the problem of extending local affine

collineations to the whole of space-time.

I. INTRODUCTION

Many of the techniques for finding exact solutions of
Einstein’s field equations in general relativity involve the as-
sumption that certain symmetries exist in the space-time. A
thorough discussion may be found in Ref. 1. Most of these
assumptions require the existence of a certain number and
type of Killing vector fields defined globally on space-time
and lead to a local type of Lie group isometric action. Full
details of local and global Lie group actions can be found in
Ref. 2, while a brief summary has been given in Ref. 3. The
purpose of this paper is to consider the case when a space-
time admits local groups of affine collineations generated by
global affine vector fields.

Section II gives a brief discussion of the interconnection
between the metric and associated connection on space-time,
the associated holonomy group, the existence of recurrent
and covariantly constant tensors, and local and global de-
composability. Some of the mathematical formalities of this
section are merely noted in passing and are not required in
any serious way in the remaining sections. Others, however,
will be significant in what is to follow and all of them are, in
their own way, helpful in understanding the problem. Local
considerations are dealt with in Secs. III-V where the types
of space-time admitting proper affine collineations will be
displayed. The fixed point structure of affine collineations
will be discussed in Sec. VI, while the global extension of
local affine collineations will be covered in Sec. VII. A final
summary and some examples will be given in Sec. VIIL.

The notation is a standard one. The (connected) space-
time manifold will be denoted by M and its Lorentz metric of
signature ( — + 4+ + ) by g. The Riemann and Ricci ten-
sors associated with g are denoted in local coordinates by
R,..q and R, =R*, ,, respectively, a covariant derivative
with respect to g by a semicolon, and a partial derivative by a
comma. The space-time manifold will always be assumed
simply connected (and hence time orientable), although this
is not necessary for some of the local considerations. This
last assumption guarantees the existence of a global, no-
where-zero timelike vector field on M. Space-time will be
assumed nonflat in the sense that the Riemann tensor does
not vanish over an open subset of M. All structures on M will
be assumed smooth.
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Il. HOLONOMY AND DECOMPOSABILITY

The metric connection of the space-time M leads natu-
rally to the holonomy group of M, ®, at any peM. Full
details of holonomy theory can be found in Ref. 4 (Vol. I).
Since M is connected (and hence path connected) ®, and
®, are isomorphic for any p,geM and one speaks of the ho-
lonomy group of M. This group is a connected (since M is
simply connected) Lie group isomorphic to a connected sub-
group of the (component of the identity of the) Lorentz
group .Z; and can thus be identified with one of the 15 types
of subalgebra of the six-dimensional Lie algebra of .7,
These subalgebras have been discussed elsewhere in the pres-
ent context™® and are labeled R,—R,; according to Ref. 7.
Here R, is the trivial case and R is the full Lorentz algebra
(and R, is impossible for holonomy groups®). The holon-
omy groups arising from each of these subalgebras except
R s are reducible in the sense that if ®,, is realized as a group
of linear transformations from the tangent space T, M to M
at p onto itself, some nontrivial subspace of T, M remains
invariant under this group. Such a subspace then deter-
mines, by parallel transport, an integrable distribution on M
and the resulting maximal integral submanifolds of this dis-
tribution constitute totally geodesic submanifolds of M
whose nature (timelike, spacelike, null) is the same at each
peM. The holonomy group of M is called nondegenerately
reducible if some nontrivial, non-null subspace of T,M is
invariant under the holonomy in the above sense.

Animportant result was given by Wu® in the case that M
is simply connected, (geodesically) complete, and nonde-
generately reducible [a generalization of the well-known de
Rham theorem for positive-definite manifolds—see, for ex-
ample, Ref. 4 (Vol. I)]. In this case M is isometric to the
metric product of the maximal integral submanifolds ob-
tained as described above from a nontrivial, non-null, holon-
omy invariant subspace of T, M and its orthogonal comple-
ment. If the above conditions on M, except completeness, are
retained then M is necessarily locally decomposable® in the
sense usually meant in general relativity.!® The nontrivial
nondegenerately reducible cases are the holonomy types R,
R¢, and R, (14 3 timelike), R,; (1 + 3 spacelike), R,
(14 1+ 2 spacelike), R, (1 + 1+ 2 timelike), and R,
(2 + 2), where the description in parentheses refers in an
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obvious way to the nature of the decompostion. Thus the
digit 1 refers to a non-null, holonomy invariant, one-dimen-
sional distribution on M (and hence to an associated, global,
nowhere-zero, covariantly constant, non-null vector field on
M since M is simply connected) and the digits 2 and 3 refer
to two- or three-dimensional, holonomy invariant timelike
or spacelike (as indicated) distributions on M. These distri-
butions span the totally geodesic, integral submanifolds of
the holonomy and are themselves not nondegenerately re-
ducible (but some of them are reducible).

The following results can now be stated.’® To obtain
maximum generality, M will be allowed to be flat in the re-
sults A, B, and C below, but elsewhere M will be assumed
nonflat as stated earlier.

A: The following are equivalent for M.

(i) M is reducible.

(ii) M admits a global, nowhere zero recurrent vector
field £ (that is, in components, k,, = k,p, for some global
one-form field p).

(iii) M admits a global, nowhere-zero, second-order,
symmetric recurrent tensor field S that is not proportional to
the metric g.

B: The following are equivalent for M.

(i) M is nondegenerately reducible.

(ii) M admits a tensor field .S satisfying the conditions of
A (iii) above and also the condition that in every chart of M,
S§°,5% =§°. (This condition is given in Ref. 1.)

(iii) M admits a tensor field S satisfying the conditions
of A(iii) and the condition that its Segré type (necessarily
the same everywhere) is {1,111} or some degeneracy of this
type [except, {(1,111)}].

In the statements B(ii) and B(iii) the tensor S may be
chosen covariantly constant and so nondegenerately reduc-
ible space-times admit covariantly constant tensors S as
above. A consideration of the holonomy types R; and R,
shows that the converse is false. The nondegenerately reduc-
ible types with R, excluded can be characterized by their
admitting a global, nowhere zero, non-null covariantly con-
stant vector field.

C: If M admits a tensor S satisfying the conditions A (iii)
which is covariantly constant then all the eigenvalues of S
are constants on M and one either has the type R, or else M
admits a global, nowhere zero, covariantly constant vector
field that may be chosen as an eigenvector field of S on M.
The holonomy type of M is either R,—R,4, R¢—Rg, R1o, R}, OF
R,,.

The conditions of result C are equivalent to M admitting
a Lorentz metric g’ that is not a constant multiple of g but
generates the same symmetric connection as g on M.’

lil. AFFINE COLLINEATIONS

A bijection y: M — M such that ¥ and ¢! are smooth
and such that 17/*(0 = w, where w is the connection one-form
on the frame bundle of M arising from the metric g on M, and
1 the natural extension of ¢ to the frame bundle is called an
affine transformation of M. The question of the Lie group
structure of the group of all such transformations is dis-
cussed in Refs. 3 and 4 (Vol. I). However, in this paper the
more general, local Lie groups of local affine transformations
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(collineations) will be considered. These are characterized
by a finite-dimensional Lie algebra of global affine vector
fields on M. Such a vector field £ on M can be characterized
by the local coordinate condition

§a;bc = Rabcd§ d‘ (1)

A decomposition of £, into its symmetric and skew-sym-
metric parts and use of Eq. (1) gives (see, for example, Refs.
3and 5)

(1) §a;b =hab +Fab (hab =hba’ Fab = _Fba)’
(ii) Ay =0, (2)
(“l) Fab;c = Rabcdgd (: Fvab;cé‘c = O)

The vector field £ is homothetic (respectively, Killing) if
h., = vg,, with v = const#0 (respectively, 4,, =0) and
otherwise is called a proper affine vector field. In the last case
one has a global, covariantly constant tensor field # on M as
described in the last section. The global tensor Fis called the
affine bivector. The existence of the tensor 4 shows that if a
proper affine is admitted the holonomy group of M is reduc-
ible®; in fact it is either nondegenerately reducible (and
hence one has either a holonomy corresponding to the R,
type or a covariantly constant, nowhere zero, non-null, glo-
bal vector field on M) or else M admits a global, covariantly
constant, nowhere zero null vector field (or both). The ho-
lonomy types are given in result C above. The allowed Pe-
trov and Segré types for the Wey! and energy-momentum
tensors can be computed (and the table in Ref. 6 is some-
times useful but note this table is subject to the more restric-
tive conditions imposed in Ref. 6). As a result, and using
Einsteins’s equations with zero cosmological constant,
many types of physical fields studied in general relativity
theory are excluded.’ For example, the existence of a proper
affine eliminates all vacuum space-times except the pp
waves, all perfect fluid space-times for which, in the usual
notation, 0<p5#p>0, all non-null Einstein-Maxwell fields
except the 2 + 2 locally decomposable case (R,), and all
nonvacuum Einstein spaces again except the R, case.

It is convenient at this point to discuss the maximum
number of global, independent, proper affine vector fields
permitted. Let H denote the finite-dimensional vector space
of global, covariantly constant, second-order, symmetric
tensor fields on M and let dim H = n>1. Let K denote the
subspace of H that consists of those members of H that arise
from an affine vector field as described above and let
dim K = m<n. Finally suppose that M admits an r-dimen-
sional Lie algebra of global affine vector fields. By taking
appropriate linear combinations of these affine vector fields
one can always arrange that » — m of them are Killing. In
fact, if geK (equivalently M admits a global homothety),
then one can arrange that r — m + 1 of these affine fields are
homothetic (» — m of which can be arranged to be Killing)
and m — 1 of them are proper affine and if g¢K one can
arrange that r — m of them are Killing and m of them proper
affine. The proofis straightforward. The vector spaces H and
K may or may not be equal. In what is to follow, phrases like
“the maximum number of independent proper affine vector
fields” will always be taken in the above sense.
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IV.THE 14 3 CASE

Consider first the 1 + 3 spacelike case corresponding to
the holomony algebra R,,. Here one has a global, nowhere
zero, covariantly constant, timelike vector field # uniquely
determined by the coordinate relations u,, =0, u,u°
= — 1 and the choice that u is future pointing, which is
permissible since M is time orientable. The uniqueness of u
follows from the holonomy condition and the only global
independent, second-order, symmetric, covariantly con-
stant tensors are g, and u,u, as follows from result C. The
totally geodesic submanifolds that arise from the holonomy
are represented by the flow of u and the three-dimensional
spacelike submanifolds orthogonal to u. The Ricci identity
gives R, u? =0 and hence R,,u* =0 and so the Petrov
type is I, D, or O (Ref. 11) and the Segr¢ type of the Ricci
tensoris {1,111} or one of its degeneracies.'? Both types may
vary over M.

Now the consequences of M admitting a global, affine
vector field £ will be evaluated. Of course, M already admits
the affine vector field u. In local coordinates one has from
(2),

Eup = Qg + Pu,u, + F,, (a,pf constants). (3)
The case when £ is homothetic (respectively, Killing) corre-
sponds to 8 = 0 (respectively, @ = 8 = 0). There is at most
one global, independent, proper affine vector field in the
sense of the previous section. If one defines a global, real-
valued function x on M given in local coordinates by
x = u,£°, then one easily finds x ,, =0 and so x, =k, is a
constant multiple of #,. In fact, (2) gives x,u° = — a and
sox, = (@ — B) u, and then (3) gives F,,u®= 0. Hence Fif
nonzero is a simple, spacelike bivector and x = const <> a
= which, in turn, is equivalent to the Lie bracket
[£&,u] = 0. If « = const one can ensure it is nonzero by, if
necessary, adding to £ a constant multiple of «. This will not
affect any of the above discussion and the decomposition (3)
is left unchanged. With this assumed done, global vector
fields k& ' and k can be constructed by the coordinate represen-
tations k' = ku® k° = £° + k'“ so that k is orthogonal to
u, k“u, =0, and k 's£0. Then
kla;b=(a_ﬁ)uaub [:> k'a;b¢=0 (=Rabcdk'd)],

(4)

ka;b =a(gab + uaub) +Fab (: ka;bc = abcdkd)' (5)

Hence k and k' are global, affine vector fields on M.

One can now consider the various cases obtained from
the particular values of a, £, and F. If a 20, 8 #0, then £ and
k are proper affine and k' is proper affine (respectively, Kill-
ing) if a# B (respectively, a = ). If a5£0, 8= 0, then £ is
homothetic and & and k' are proper affine. If @ = 0, § #0,
then £ and & ' are proper affine and either Fis identically zero
on M, in which case k is identically zero on M (and so
&= — k'), or Fisnot identically zero on M, in which case k
is a Killing vector field on M. If @ = § = 0, then £ is Killing
on M and k' isa constant multiple of u. If also Fis identically
zeroon M, then kisalsoand k 'and £( = — k') areconstant
multiples of u, whereas if Fis not identically zeroon M, kisa
Killing vector on M. Whenever two or more proper affine
vector fields occur they are not independent (in the sense of
the previous paragraph), in that an appropriate linear com-
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bination of them is a global homothetic or Killing vector
field [for example, if 0£a#B #0, k +a(B—a) k',
&€ +B(B—a) 'k’',and £ — Ba~ 'k are each homothetic].

Two further points may now be made. First, one always
has a local, proper, affine vector field in the sense that for any
PEM there exists a (contractible) neighborhood Uof pand a
real valued function w on Usuch that, on U, ¥, = w,. Then
wu’ is a proper, affine vector field on U satisfying (3) with
a=0,8=1, F=0. This would produce a global, proper,
affine vector field if M were contractible. Second, since the
vector field k and the bivector field F are everywhere orthog-
onal to u they define in a natural way a global vector and
bivector field, respectively, in each of the hypersurfaces or-
thogonal to u. The positive definite induced metric on each
of these hypersurfaces is represented locally by g, + u,u,.
Using standard coordinates from the local decomposition of
M, the covariant constancy of 4, and (5), one can show that
either k=00n M or else k determines a global nonidentically
zero homothetic or Killing vector field with respect to the
induced metric in each of these hypersurfaces. This follows
since if the induced vector field from k is zero everywhere on
a particular hypersurface then F is also zero on this hyper-
surface and a = 0. Hence k is a Killing vector in M such that
k “and k,, are simultaneously zero at some point of M and
so k=0 on M since M is connected.

The conclusion here is that if M is to admit a global (or
local) affine vector field not parallel to the covariantly con-
stant vector field », then the hypersurfaces orthogonal to u
must themselves exhibit some homothetic or Killing symme-
try and, in general, they will not, since no geometrical re-
striction of this nature is placed on these hypersurfaces.

In the case when M is complete, the nondegenerate
reducibility of M and its simple connectedness give rise, as
mentioned in Sec. II, to a global isometric decomposition
M = H xR, where H is isometric to any of the submanifolds
orthogonal to . With the real valued function w represent-
ing the usual global chart on R in an obvious way, one sees
that the proper affine vector field wu discussed earlier can
now be taken as a global, proper affine vector field on M.
Another global, proper, affine vector field on M not propor-
tional to # will arise if and only if H admits a global homo-
thetic or Killing vector field. Now since H is positive-defi-
nite, irreducible (by definition of the original holonomy)
and complete (since M is complete and H totally geodesic)
and since H cannot possess a nonempty open subset V in
which the induced curvature tensor is zero (for then M
would possess the flat open subset ¥ X R}, it follows that H
admits no proper global homotheties [Ref. 4 (Vol. I)]. In
this case one need only consider Killing symmetries on H
and it follows that M admits no proper global homotheties.
It also follows in this case from the completeness of M that
all global affine vector fields that arise on M are complete
vector fields [Ref. 4 (Vol. I)], and as a consequence of
Palais’ theorem? give rise to a global Lie group G action on M
representing the affine transformations whose Lie algebra is
isomorphic to the Lie algebra of global affine vector fields on
M. Here, one can say more about G because any global Kill-
ing vector field in H with respect to the induced geometry in
H gives rise in a natural way to a global Killing vector field
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on M as is easily checked using local coordinates adapted to
the decomposition. It then follows that the Lie algebra of
global, affine vector fields on M can be spanned by the vector
fields u, wu and the global Killing vector fields of H. Further
if £ ! represents either u or wu and £ *is a global Killing vector
field on M arising as described above from one in H then
[£',£?%] = Oand so Gis Lie isomorphic to G, X G,, where G,
is the non-Abelian two-dimensional Lie group of affines
spanned by # and wu and G, is the Lie group of isometries of
H. Since 0<dim G,<6 one obtains 2<dim G<8.

If M is not complete then one still has a local metric
product structure for M (local nondegenerate decomposabi-
lity) such that each peM may be assumed to lie in a con-
tractible chart W which is isometric to H' X I, where H' isa
positive-definite three-dimensional submanifold of M every-
where orthogonal to u and 7 is an open interval of R with its
usual induced metric. Again ¥ and wu are affine vector fields
on W, but the situation is different in two important respects
from the complete case above. First, even though H ' has no
flat open subsets (for the same reason as above), there may
now be homothetic or proper, affine vector fields defined on
H' (with respect to the induced metric on H’) and these can
be extended naturally to affine vector fields defined on W.
(The existence of a proper, affine vector field on H' is equiva-
lent to the positive definite induced metric on H' having a
reducible holonomy group [Ref. 4 (Vol. I)].) Second, one
no longer has, in general, a Lie group of affine transforma-
tions on W, but only a local group action. The structure of
the Lie algebra of affine vector fields on W may change if p
and W are changed. In certain cases local affine vector fields
many be extended to global ones and this will be considered
in Sec. VII. However, whether M is complete or not, there
may be local affine vector fields on some open subset Wof M
that are not globally extendible to M and the local affine
structure of M may not be independent of W in this sense.

The general ideas given above apply to the 1 + 3 time-
like cases also and so this case will not be discussed in detail.
There are, however, some differences caused by the fact that
the three-dimensional totally geodesic submanifolds ob-
tained from the holonomy are now orthogonal to a global,
covariantly constant, unit spacelike vector field y (Ref. 5)
(and hence have an induced metric of Lorentz signature)
and these will be briefly pointed out. The Ricci identity gives
R,y =0and R,,y° = 0. In the R, case there are no re-
strictions on the Petrov or Segré types'"'? and the three-
dimensional holonomy submanifolds mentioned above are
irreducible. In the R case these submanifolds are reducible
but not nondegenerately so because M admits a global, re-
current, null vector field everywhere tangent to them. The
Ricci identity can then be used to show that the Petrov type
is N or I1I at points where the Ricciscalar R =0and IIor D
at points where R #0 (see, for example, Ref. 6). The Segré
type (which may vary over M) is either {(1,1)(11)},
{31}, {21}, or {(211)} as can be deduced from the
table in Ref. 6 (but note the more restrictive conditions im-
posed in this reference). The corresponding affine bivector
now satisfies F,,y? = 0 and so if nonzero is simple but may
be timelike, spacelike, or null. Finally, those results appealed
to in the previous case and which relied upon the three-di-
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mensional holonomy submanifolds inducing a positive-defi-
nite metric are no longer applicable.

The 2 + 2 (R;) case will be discussed in the next sec-
tion. Concerning the remainder of the nondegenerately de-
composable cases: 1 + 3 timelike (R,), 1 + 1 + 2 timelike
(R,),and 1 4+ 1 + 2 spacelike (R,), their treatment is simi-
lar to that given above. For example, in the 1 + 1 + 2 space-
like case one has, on M, global, nowhere zero, unit, covar-
iantly constant timelike and spacelike vector fields given in
components by v and z° respectively, which together span
the flat timelike submanifolds obtained from the holonomy.
There are exactly four independent, global, second order,
symmetric tensor fields whose components are v,v,, z,2,,
V.2, and g, and hence a maximum of three independent
(in the sense used earlier) global, proper affine vector fields
on M. A general global affine vector field £ projects onto the
spacelike submanifolds determined by the holonomy to give
an affine vector field on M which is a global homothetic
vector field in the induced geometry of these submanifolds.
The affine bivector of £ is in general nonsimple and its ca-
nonical blades are tangent to the above pair of holonomy
submanifolds at each point (cf. the 2 + 2 case in Sec. V).
The projection of £ onto the timelike holonomy submanifold
is a linear combination of the six independent affine vector
fields admitted locally by this flat two-space and represented
by the affine vector field (a + bv + cz)v* + (d + ev + f2)2°,
where v, =v,2z, =z, and a,b,...,f are six arbitrary con-
stants. Thus M always admits the local, independent proper
affines vv°, zz° and vz” + zv® (and these lead to global affines
if M is contractible or complete). In either of the 1 4+ 1 + 2
cases, if M is complete, a Lie group G of affine transforma-
tions arises which satisfies 6<dim G<9. That the maximum
number can be achieved follows from a consideration of the
Lorentz manifold S 2 X M 2, where S ? has its usual meaning
and (positive definite) metric and M ? is two-dimensional
Minkowski space. Further details can be found elsewhere. "’
It turns out, in fact, that 9 is the maximum dimension for the
Lie algebra of global affine vector fields on any nonflat
space-time as follows from the case by case study presented
in this and the next section. An easier proofin a more general
context will be given elsewhere.'*

V.THE 24 2 CASE

Now consider the 2 + 2 case with holonomy algebra R ’
where the totally geodesic submanifolds determined by the
holonomy constitute two orthogonal families of two-dimen-
sional submanifolds, one spacelike and one timelike. Here
one may introduce locally a null tetrad field /,n,x,y (with
1°n, = x°x, = y°y, = 1, and all other inner products zero)
such that /,n and x,p span the totally geodesic submanifolds
at each point. In this case there are exactly two independent,
covariantly constant, second-order, symmetric tensor fields
defined globally on M.> They can be given locally by P,

=2l,n, and @,, = x,x, +»,), and they are related to
the metric by the completeness relation g, = P,, + Q,,-
The Weyl tensor is either type D (with / and n spanning its
principal null directions) or 0 and the Ricci tensor is either
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of Segre type {(1,1)(11)} (with /,n and x,y spanning the
degenerate eigenspaces) or its degeneracy. Again the types
may vary over M. The null vectors / and n can be globally
defined on M (because M is simply connected) and are re-
current, while t.he bivectors represented locally by M,,
=2l ,n, yand M, = 2x,; ; can also be extended to global
nowhere zero covariantly constant bivectors on M. JHere,
an asterisk denotes the usual duality operator and M, can
be globally extended on M since M is orientable (because it is
simply connected).] The space-time M admits no global co-
variantly constant, nowhere zero vector fields.> The Rie-
mann tensor takes the local form®

Rabcd =aMachd + bﬁabﬁc‘d’ (6)
where a (respectively, b) depends only on the coordinates of
the timelike (respectively, spacelike) totally geodesic sub-
manifold in the usual locally decomposable charts.

Now suppose a global affine collineation £ exists on M
satisfying (1), (2) and hence the local relation

§a;b = agab + 2BI(anb) + Fab

=(a+ﬁ)Pab +aQab +Fab’ (7)
where a and B are constants and F is the affine bivector.
Define global vector fields by the local relations k * = P, £°
andk'* = Q% &% sothat £ = k + k. Then for k one obtains
from (7),

ka;b =(a+B)P,, + P, F*, (8
and (2iii), (6), and (8) show that k is an affine vector field

ka;bc = PadR dbceé-e = aPadechek ¢ = Rabceke‘ (9)
Equation (9) shows thatk,,;, is covariantly constant and so
K(ap) = 18 + VP, (1,v constant). Inserting this into (8)
and contracting with the local vector field x shows that
u=0,v=(a+p),and

Fux’= —pya, Fouy*=px,, (10)
for some real-valued function p. Equation (10) shows that F
if nonzero is a non-null bivector whose canonical pair of
blades is spanned by the pairs /,# and x,y at each point and so

F,, =oM, + oM, (11
for real-valued functions o and o’. Then (8) gives
ko = (@ +B)P,, +0oM,,. (12)

In (12), k lies in the blade of the simple bivector M and so is
hypersurface orthogonal in the sense that k., k., =0. It is
also noted here that Egs. (2iii) and (12) show that o, (re-
spectively, o’ ,) lies everywhere in the blade of M, (respec-
tively, M,,) and that £ %o, = £’ , = 0.

Similar calculations show that the global vector field &’
is affine,

k' spe = Ropeak ', (13)
k ,a;b = aQab + alﬁab' (14)
Now k'’ lies everywhere in the blade of A‘la,, and is hypersur-
Jface orthogonal in the above sense.
As before, various cases can be distinguished depending
on the values of @, B, and F. If a #0, B #0, and a + B8 #0,

then &, k, and k'’ are proper affine vector fields on M, and k
and k' uniquely define homothetic Killing vector fields in
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their respective totally geodesic submanifolds with respect
to the induced metrics. fa #20and @ + f =0, thenfand k'

are proper affines and % is Killing on M. Also £’ is homo-
thetic in its totally geodesic submanifold and either k<=0 on
M or else defines a nonidentically zero Killing field in each of
its totally geodesic submanifolds. If @ =0, B #0 (respec-

tively, @70, B = 0), then ¢ is proper affine (respectively,

homothetic) on M, k is proper affine on M, and k' is Killing
(respectively, proper affine) on M, while in their respective
totally geodesic submanifolds & is homothetic and k£’ either
Killing or identically zero (respectively, homothetic) on M.
If & = B = 0, then since M admits no global covariantly con-

stant vector fields, any of £, k, and k', if not identically zero,
is Killing on M with similar comments applying to k and &’
with respect to their respective totally geodesic submani-
folds.

The 2 4 2 (R;) case is thus qualitatively similar to the
previous case. Consider the case when M is complete. Then
each of the two-dimensional totally geodesic submanifolds
determined by the holonomy is complete and M is isometric
to H, X H,, where H, and H, are isometric to the above ho-
lonomy submanifolds. Suppose that H, is timelike and H,
spacelike. The manifolds H, and H, are irreducible (by the
holonomy condition), simply connected (since M is), and
complete (since they are totally geodesic). Palais’ theorem
then shows that the affine vector fields on M (which are now
complete since M is [Ref. 4 (Vol. I)]) lead to a Lie group G
of affine transformations on M which, as before, is of the
form G = G, X G,, where G, and G, are the Lie groups of
homotheties on H, and H,, respectively. (In fact, G, will be
the Lie group of isometries on H,. This follows because H, is
positive definite, complete, and irreducible and hence pos-
sesses no global proper homotheties [Ref. 4 (Vol. I)]. It
follows that 0<dim G<6. If H, possesses a global, proper
homothety then it can possess at most one global Killing
vector field and so in this case dim G,<2 and dim G<5. This
is because if H, possessed two independent, global Killing
vector fields, then since it is simply connected, it must pos-
sess a third (see Sec. VII). This gives dim G, = 4 and so H,
is flat, in contradiction to its irreducibility.)

If M is not complete, the discussion presented earlier in
the incomplete 1 + 3 case applies with obvious modifica-
tions. One major difference in both the complete and incom-
plete cases is that here one does not necessarily have a global
or local proper affine vector field existing. In fact, there is at
most one independent, global, proper affine vector field in
the sense used in this paper.

Finally, in the case of interest for global, affine collinea-
tions when M is not nondegenerately reducible, one has a
unique (up to a constant factor), global, covariantly con-
stant, nowhere zero vector field / on M and it is null. The
holonomy types here are Rg and R,,. One can analyze these
cases in the way that was done for the others, but less infor-
mation was obtained. If one supposes that £ is a global, affine
vector field on M, then (1) and (2) hold with 4, = ag,,
+ Bl,1, (a, B constants), and it can be shown that the affine
bivector satisfies F,,/® = yl, with y constant. The constant
¥ need not be zero as can be seen by choosing £ to be the
standard homothety of the vacuum or generalized plane
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wave solution in general relativity.'* If k = £°/,, then & + !/
is also affine and there is at most one independent, global
affine vector field on M in the sense described earlier. One
always has the local relation /, = ¢, for some real-valued
function 1, and so the local, proper affine vector field ¥ , is
always admitted which is global if M is contractible.

VL. FIXED POINTS OF AFFINE COLLINEATIONS

The subset of points of M which remain fixed by every
member of the local group of local affine collineations gener-
ated by a nonidentically zero global affine vector field £ on M
is either empty, discrete, or is such that each of its compo-
nents is a totally geodesic submanifold of M [Ref. 4 (Vol.
II) ]. If ¢ is Killing such components are either empty, single
points, or two-dimensional and if £ is homothetic they are
either empty, single points, or (part of) a null geodesic in
M." In this section a brief discussion will be given of the
(local) fixed point structure of local one-parameter groups
of local, proper affine collineations on M represented in a
standard notation (Ref. 4, Vol. I) by local maps ¢, for ¢ in
some interval about OcR. Such a local group may admit no
fixed points. It admits a fixed point peM if and only if
&(p) = 0. Suppose p is a fixed point of all the ¢, and let ¢ be
the usual exponential diffeomorphism from some open
neighborhood U’ of 0T, M to some open neighborhood U
of p. Then U and U’ may be chosen so that ¥o¢,* = ¢, 09
holds where it makes sense [Ref. 4 (Vol. I) ]. One may then
follow the method used in Ref. 15 to study the fixed point
structure because, at p, @,* =exp[t5°,] =exp[t(h?,

+ F)]. Fixed points of all the ¢, correspond under ¢ to
members of 7, M that are eigenvectors of the matrix £ °, atp
with zero eigenvalue and so one is left with an algebraic
study of & and F at p. It turns out that either p is isolated or
the component of the set of fixed points containing p is of
dimension 1, 2, or 3. Further details of the possibilities can be
found in Ref. 13.

More can be said about the conditions at a fixed point p
of the ¢, if one recalls that for any affine vector field £ on M
(and denoting the Lie derivative along £ by .Z,)

ZL,Ricc=0 (& ¢,* Rice = Rice), (15)

where now it is convenient to use the index free symbol Ricc
for the Ricci tensor. Equation (15) and the condition on
Z g obtained directly from [2(i)] then supply important
information about the algebraic structure of Ricc at p.'° For
example, consider the 1 + 3 spacelike case. Here one has
from (3)

¢,*g=e‘2“’g+yu®u, (16)

where ¥ = const. From Sec. IV, Ricc is diagonalizable (over
R) everywhere (Segré type {1,111} or one of its degener-
acies) and u is an eigenvector everywhere with zero eigenval-
ue. Following the argument given in Ref. 10 (see also a simi-
lar one in Refs. 3 and 15), let  be any other eigenvector of
Ricc at p with eigenvalue A which without any loss of genera-
lity for the following argument may be taken to be orthogo-
nal to u at p. Then for any »’eT, M, Ricc (0,0") = Ag(w,0")
and so from (15) and (16) one has
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¢, *Ricc(w,0') =1 [€79,*g — v us u] (w,0")
= Ricc(¢,*w,¢,*0’)

= A**g(d, *w,d,*®')

and so ¢,*w is an eigenvector of Ricc at p with eigenvalue
Ae**. Since there are at most four distinct eigenvalues of
Ricc at p, one has a = 0or A = 0. If a0 at p, then all Ricci
eigenvalues are zero at p, and because of the diagonalizabi-
lity of Ricc, Ricc = 0 at p. It should also be noted that a zero
of the vector field £ is also a zero of the vector fields k and k'
in the notation of Sec. IV and this fact may be used to give a
variation of the above discussion of the Ricci eigenvalues at
p. The other cases may be discussed similarly, but it should
be noted that the vanishing of all the Ricci eigenvalues at
some peM, in the general case, implies that either Ricc =0
or has Segre type { (211)} with zero eigenvalue or Segré type
{(31)} with zero eigenvalue at p.

VIIl. GLOBAL EXTENSIONS OF LOCAL AFFINE VECTOR
FIELDS

Sections III-V discussed the consequences for a space-
time M which admits a global, proper affine vector field. The
work in these sections also showed how one could construct
local affine vector fields on M, in the nondegenerately de-
composable case, directly from the local decomposition by
taking appropriate combinations of local affine vector fields
(if any exist) in the submanifolds of decomposition. This is a
method quite likely to occur in practice and so the question
then arises whether or not these local affine vector fields can
be extended to global affine vector fields on M. In general,
the answer to this question is no. However, with one extra
assumption on M, which is perhaps not unreasonable from
the physical viewpoint, such an extension is always possible.
Two proofs of this fact will be briefly mentioned. One is an
extension of a proof due to Nomizu,'® while the other relies
on a covering space argument.'’

Let U be a connected, coordinate domain of M and £ a
(local) affine vector field of M defined everywhere on U and
hence satisfying (2) on U. If peU and c is any curve in U
through p with tangent w at p, then one has

(] b b d
ga;bw = habw + Fabw ’ Fab;cwc = Rabcdwcg ’
hab;cwc = 0.

It follows that if £,, F,,, and A, (thatis, £, and £,,) are
given at p, then £ is uniquely determined throughout U. Now
let 0, M (respectively, S,M ) denote the vector space of all
second-order, covariant, skew-symmetric (respectively,
symmetric) tensors at p. Then let ¥V, be the direct sum
V,=T,MeQ ,MaeS,M.If A(U) is the Lie algebra of af-
fine vector fields on U there is an obvious natural linear map-
ping A(U) -V, given by £—(5°(p), F,, (), hay (p)), and
which from the above discussion is one-to-one. Hence
dim 4(U)<dim ¥, = 20. For each peM let 4,* denote the
vector space of germs of affine vector fields defined on some
open neighborhood of p, that is, the vector space of equiv-
alence classes of affine vector fields under the equivalence
relation of equality on some open neighborhood of p. As
Nomizu showed, one may always choose U such that 4(U)

(17)
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is naturally isomorphic to 4, * and such a U's called a special
neighborhood of p. The theorem may now be stated.

Theorem: Let M be a (connected, smooth, Hausdorff)
simply connected space-time manifold with smooth Lorentz
metric g such that dim 4, * is the same for each peM. Then if
£ is a smooth, affine vector field on some connected, open
subset U of M it may be extended to a global, smooth, affine
vector field on M.

Proof: One may prove the theorem by first using Eq.
(17) and the above discussion to modify Nomizu’s tech-
nique of prolongation. The details follow those given by No-
mizu fairly closely and need not be repeated. They can be
found in Ref. 13. An alternative proof has been given'’
which starts by choosing an open covering {U, } of M con-
sisting of all special coordinate neighborhoods of M. Each
U, carries an m-dimensional Lie algebra of affine vector
fields, where m = dim A4, *, which is completely determined
by the values of these vector fields and their first covariant
derivatives at any point of U, . Roughly speaking, one builds
the union UU# (where U# denotes a choice of m indepen-
dent members of this Lie algebra, labeled by 8, on U, ) for all
possible choices of @ and S. By a process of identification
and choice of (connected) component, the latter depending
on the original given local vector field £, this set gives rise toa
connected manifold M’ that is a covering space of M, 7:
M’ - M and admits a Lorentz metric 7*g and m global affine
vector fields. Since M is simply connected, 7 is an isometry
M’ — M and thus M admits m global affine vector fields, one
of which, in fact, extends the original, local affine vector field
£

This result in no way depends on the dimension of M or
the signature of g. As stated here, it applies to affine vector
fields but it can be shown to apply equally well to homothe-
tic, Killing, and conformal Killing vector fields.!” It may
also be used to establish a result mentioned without proof
towards the end of Sec. V, namely, that if a simply connected
two-dimensional manifold admits two independent, global
Killing vector fields then a third, global Killing vector field
is admitted. The existence of a third Joca! Killing vector field
in some neighborhood of each point of the manifold is, of
course, well-known and so one immediately sees that the
dimension of the vector space of germs of Killing vector
fields associated with any peM is equal to 3. The theorem
(applied in the case of Killing vector fields) then provides
the third, independent global Killing vector field on the
manifold.

VIH. EXAMPLES AND CONCLUSIONS

This paper has attempted to present a complete discus-
sion of the existence of affine collineations in (simply con-
nected) space-times. The results indicate that they are of
limited use in general relativity because of the restrictions
their existence imposes on the space-time manifold. How-
ever, a number of standard examples admit groups or local
groups of affine collineations and some of these can now be
briefly discussed.

The Einstein static universe: Here the manifoldis R X S *
and is thus simply connected. A local form of the metric is

ds’ = —dt? 4+ dr* + sin® r(d@? +sin”> 6dg?). (18)
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This space-time admits seven global Killing vector fields one
of which may be taken timelike, covariantly constant, and
equal to d /3t when restricted to any of the above charts. The
other six may be assumed to lie in the complete, spacelike
submanifolds of constant positive curvature orthogonal to
the above Killing vector [(1 + 3) spacelike case]. The
space-time is complete and so a seven-dimensional (transi-
tive) Lie group of isometries arises. The results of Sec. IV
show that an eight-dimensional (transitive) Lie group of
affine transformations arises whose independent, proper af-
fine members (in the sense described earlier) may be as-
sumed generated by the global, proper affine vector field
represented by #(d/dt) in each of the above charts. This
space-time admits no global, proper homothetic vector fields
(or even local ones) as follows from the results of Sec. IV,
the homogeneity of the space-time, and the results of Sec.
VILY

The Godel universe: Here the manifold is R* and is thus
simply connected. The metric in a global chart is

ds® = —dt? + dx* + dZ* — Je¥?%* dy? — 2¢%%* dt dy,
(19)

where w is a positive constant. This manifold admits five
global Killing vector fields and being complete, a five-di-
mensional transitive Lie group of isometries. The global vec-
tor field (3 /9z) is spacelike and covariantly constant and the
1 + 3 timelike case results. The results of Sec. IV show that
there exists a six-dimensional transitive Lie group of affine
transformations and z(J /3z) is a global, proper affine vector
field. It can be shown that no local or global homothetic
vector fields are admitted.

Another example of the 1 4- 3 timelike case is the mani-
fold R* together with the global metric

ds* = e du dv + dx* + dy*. (20)

This metric was given in Ref. 18 and discussed further in
Ref. 15. Here d /dyis a global, covariantly constant spacelike
vector field and there are two global independent Killing
vector fields that may be taken as d /dyand 8 /dv. In this case,
however, there is a global, proper homothetic vector field
given by

The three vector fields given above together with the global,
proper affine vector field y(d /dy) are all complete vector
fields and so by Palais’ theorem one has a four-dimensional
(nontransitive) Lie group of affine transformations.

The Bertotti-Robinson metric provides an example of
the 2 4 2 case, but since such a space-time is the metric prod-
uct of two two-dimensional spaces of constant curvature,
inclusion in the present 2 + 2 case would require both curva-
ture constants to be nonzero. As a result neither of the two-
dimensional manifolds can admit a homothety and from the
results of Sec. V one sees that no global, proper homothetic
and hence no global, proper affine vector fields occur in this
case. Nevertheless, examples of the 2 + 2 case admitting glo-
bal, proper affine vector fields can be constructed.

Of those metrics admitting covariantly constant, global
null vector fields the generalized plane waves provide exam-
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ples where the manifold is R* (hence simply connected) and
the space-time complete. They admit a Lie group of isome-
tries of dimension 5 or 6 (respectively, 6 or 7) in the type N
(respectively, type 0) case. A global, proper homothetic vec-
tor field is always admitted'>'® as is the global, proper affine
vector field given at the end of Sec. V. Thus there is a Lie
group of affine transformations of dimension 7 or 8 (respec-
tively, 8 or 9) in the type N (respectively, type 0) case. They
may be intrasitive (of dimension 7 or 8) or transitive (of
dimension 8 or 9). Thus, again, the maximum dimension 9 is
achieved (see the end of Sec. IV).

As a final remark, the scarcity of proper affine collinea-
tions can be made precise in a topological sense using a Whit-
ney topology argument. It is discussed in Ref. 5 and is based
on a theorem in Ref. 20.
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It had been proved earlier that spherically symmetric, static space-times have ten, seven, six, or
four independent Killing vectors (KV’s), but there are no cases in between. The case of six
KV’s is investigated here. It is shown that the space-time corresponds to a hyperboloid cross a
sphere, reminiscent of Kaluza—Klein theory, with a compactification from four down to two
dimensions. In effect, there is a unique metric for this space-time corresponding to a uniform

mass distribution over all space.

I. INTRODUCTION

Since Einstein presented his field equations there has
been much work done on the classification of space-times
according to their symmetries. In fact there is a complete
classification of Einstein spaces,’ and a great deal is known
about exact solutions of the Einstein field equations for given
stress-energy tensors.” In the first case one is limited to
stress-energy tensors proportional to the metric tensor,
while in the latter case many other stress-energy tensors are
considered. An alternate approach would be to require a
given space-time symmetry for arbitrary stress-energy ten-
sors possessing the required symmetry. While following the
spirit of Petrov’s work on Einstein spaces, it allows for all
stress-energy tensors as occur in the “exact solutions” ap-
proach. This approach was adopted for static spherically
symmetric space-times.> Later it was noticed that more
spherically symmetric space-times were possible.*

It was found* that the most general static spherically
symmetric space-times admit ten, seven, six, or four Killing
vectors (KV’s). If there are ten KV’s, the metric is either
de Sitter, Minkowski, or anti-de Sitter. If there are seven
KV’s, the metric is either Einstein or anti-Einstein. In the
case of four KV’s (e.g., for Schwarzschild or Reissner—
Nordstrom metrics), there is no further restriction on the
metric. The six KV’s occur with a metric of the form given by
the equation

ds’ =e"” dt? — " drP — a*(df* + sin’0 dg?), n

satisfying the differential constraint involving an arbitrary
constant a,

i(vle—-i/z)lz _ae—v+/1/2 (a%O) (2)

In this paper we investigate the properties of the space-
time with six KV’s. It appeared as if Eq. (1), along with the
differential constraint given by Eq. (2), represents a class of
metrics. As we show, it represents a unique metric with the
radial coordinate transformed arbitrarily. (This includes the
Bertotti-Robinson metric.?)

il. DISCUSSION

The reason why the metric given by Eq. (1) appeared to
represent a class of space-times was that there were two arbi-
trary functions related by one second-order differential con-

*) Also, Center of Basic Sciences, UGC, H-9, Islamabad, Pakistan.
® Also, Department of Mathematics, Government Postgraduate College,
Asghar Mall, Rawalpindi, Pakistan.
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straint. However, our choice of the radial coordinate is now
arbitrary, as the coefficient of the ““solid angle element” is a2,
instead of /2 in the usual spherically symmetric metric. We
are at liberty, therefore, to define a new “‘radial”’ coordinate
x by

dx =" dr. (3)

Since there is only a simple integration involved, x is well
defined by Eq. (3). In these coordinates Eq. (1) becomes

ds® = "™ dt? — dx* — a*(d9? + sin%0 d¢?), 4)
and correspondingly Eq. (2) reduces to
v = —2ae~". (5)

Taking logarithms and differentiating Eq. (5) with respect
to x gives

v'll= —‘V'V”= _%[(V1)2]r. (6)
Integrating Eq. (6) twice we get

e’ = cos*(4 + Jax) (a>0), N
=gl B (a=0), (8)
e =cosh’(4 +V—ax) (a<0), )]

where 4 and B are arbitrary constants.

We see that in each of the case <0, Eq. (1), along with
Eq. (7), (8), or (9), respectively, represents a unique met-
ric. In these cases the six K'V’s for 20, respectively, are

v (x)

K=[C0—

(C, cosh Jat + C, sinh Jat) 9
2" a at

+ (C, sinh Jat + G, coshJ—c?t)?a—
X
+ (C5cos ¢ + C sin ng)—i
3 4 ao

+ [cot @( — Cssin g + C, cos ¢) + Cs]-‘%,
(10)

a

B t? C
K=|C ———(Ct C —) s —vm]—
= [" A\ttt e A

B
+ (C +Ct)-‘2-+(C cos ¢ + C. sinqﬁ)—i
T T ‘ 36
+ [cot B( — C; sin ¢ + C, cos @) + cs]%,
(11)
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v (x) . aJ
K [Co " (C, sinJat — C, cos Ja )]at

+ (C, cos Jat + C, sin \/Et)ga—
29
+(C, o8 ¢ + C, sin )2
3 4 ae

+ [cot 8¢ — C, sin ¢ + C, cos ¢) + Cs]ga——.
(12)

The three KV’s corresponding to the parameters C;, C,, and
C; satisfy an SO(3) Lie algebra, while the other three KV’s
(corresponding to C,, C;, and C,) satisfy an SO(1,2) Lie
algebra. Thus the symmetry of the space-time has the local
structure of SO(3) ® SO(1,2). The SO(3) acts on a space-
like S2 (asphere of radius @), while the SO(1,2) is the equiv-
alent of the de Sitter symmetry for one time and one space
dimension on a hyperboloid.

So far we have not used the Einstein field equations at
all. It is not generally regarded as very meaningful to take a
metric, insert it into the field equations, and obtain a stress-
energy tensor, and hence the matter—energy distribution in
the space-time. However, it is useful for our purposes to do
SO.

The Ricci tensor corresponding to the metric given by
Eq. (1) is

RS = (/) (v +v%/2) =R},

Ri= —1/a>=R}, R*=0 (u#v).
Thus the stress-energy tensor is diagonal and is given by
TS=T\=1/ka®, Ti=T;=|a|l/4x (a#0), (14)

TO=T!=1/ka®, T:=T}= —B%4 (a=0).
(15)

(13)

Thus the mass density in the space-time is constant.
For completeness we give the geodesics in this space-
time for a = 0:

8 =cos~ {6, cos(d — &)1,
x=xy+ B 'In[1+ B*(t — t,)*/4],

(16)
(17)
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where ¢, 6,, x,, and ¢, are the constants giving the specific
geodesic. In the cases @20 we get integrals for the equation
relating x and r:

2
o= k sec?(Jax + A)dx (18)
Vk2sec?(Vax +4) — 1
and
2
f—ty= k sech?(y — ax + A)dx (19)

\/k2 sech’(y —ax+4) — 1

It is interesting to note that the space-time is like the
compactified Kaluza-Klein space-times,> except that here
we have compactification from four down to two space-time
dimensions. Presumably an analog of this compactification
from ten down to four could be of interest in superstring
theory.® It is also interesting to note that for @ = 0and B <0
there is a finite total mass,

M= (1/B)e* (20)

Hence in some sense it corresponds to a finite “universe,”
since the volume element decreases as x increases.
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